【题目】如图,在正方形ABCD中,对角线AD,BC交于点O,点E、F分别在AC,CD边上,EF∥AD,交BC于点P,若点O是△BEF的重心.![]()
(1)求tan∠ABE的值.
(2)求
的值.
参考答案:
【答案】
(1)
解:∵点O是△BEF的重心,
∴OB=2OP,
则点P是OC的中点,
∵EF∥AD,
∴点E是AD的中点,
∴tan∠ABE=
=
=
;
(2)
解:设正方形的边长为a,
则BC=
a,
∴EF=
AD=
a,BP=
a,
∴
=
×
=
.
【解析】(1)根据三角形的重心的性质得到CP=2OP,根据平行线分线段成比例定理、正切的概念计算即可;(2)设正方形的边长为a,求出EF、BP,根据三角形的面积公式计算即可.
【考点精析】本题主要考查了正方形的性质和相似三角形的判定与性质的相关知识点,需要掌握正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形;相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方才能正确解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,已知抛物线y=
x2+bx+c(b,c为常数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,﹣1),C的坐标为(4,3),直角顶点B在第四象限.
(1)如图,若该抛物线过A,B两点,求该抛物线的函数表达式;
(2)平移(1)中的抛物线,使顶点P在直线AC上滑动,且与AC交于另一点Q.
(i)若点M在直线AC下方,且为平移前(1)中的抛物线上的点,当以M、P、Q三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M的坐标;
(ii)取BC的中点N,连接NP,BQ.试探究
是否存在最大值?若存在,求出该最大值;若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】二次函数y=ax2+bx+c的图象如图所示,则一次函数y=ax+b与反比例函数y=
的大致图象是( ) 
A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在锐角三角形ABC中,BD⊥AC于D,CE⊥AB于E,且S△ADE=
S四边形BEDC , 则∠A=( )
A.75°
B.60°
C.45°
D.30° -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知y=﹣x+m(m>4)过动点A(m,0),并与反比例函数y=
的图象交于B、C两点(点B在点C的左边),以OA为直径作反比例函数y=
的图象相交的半圆,圆心为P,过点B作x轴的垂线,垂足为E,并于半圆P交于点D. 
(1)当m=5时,求B、C两点的坐标.
(2)求证:无论m取何值,线段DE的长始终为定值.
(3)记点C关于直线DE的对称点为C′,当四边形CDC′E为菱形时,求m的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中∠C=90°,∠A=30°,BC=2,点P,Q,R分别是AB,AC,BC上的动点,PQ+PR+QR的最小值是_____.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,点D为AB边上一点.
(1)求证:AD2+DB2=ED2;
(2)若BC=
,求四边形ADCE的面积.
相关试题