【题目】对于二次函数y=x2-3x+2和一次函数y=-2x+4,把y=t(x2-3x+2)+(1-t)(-2x+4)称为这两个函数的“再生二次函数”,其中t是不为零的实数,其图象记作抛物线E.
现有点A(2,0)和抛物线E上的点B(-1,n),请完成下列任务:![]()
(1)【尝试】
①当t=2时,抛物线E的顶点坐标是.
②点A抛物线E上;(填“在”或“不在”),
③n=.
(2)【发现】通过②和③的演算可知,对于t取任何不为零的实数,抛物线E总过定点,这个定点的坐标是.
(3)【应用1】二次函数y=-3x2+5x+2是二次函数y=x2-3x+2和一次函数y=-2x+4的一个“再生二次函数”吗?如果是,求出t的值;如果不是,说明理由.
(4)【应用2】以AB为一边作矩形ABCD,使得其中一个顶点落在y轴上,若抛物线E经过点A、B、C,求出所有符合条件的t的值.
参考答案:
【答案】
(1)(1,-2),在,6
(2)(2,0)、(-1,6)
(3)解:将x=2代入y=-3x2+5x+2,y=0,即点A在抛物线上.
将x=-1代入y=-3x2+5x+2,计算得:y=-6≠6,
即可得抛物线y=-3x2+5x+2不经过点B,
二次函数y=-3x2+5x+2不是二次函数y=x2-3x+2和一次函数y=-2x+4的一个“再生二次函数”
(4)解:如图,作矩形ABC1D1和ABC2D2,过点B作BK⊥y轴于点K,过B作BM⊥x轴于点M,
![]()
易得AM=3,BM=6,BK=1,△KBC1∽△MBA,
则: ![]()
即 ![]()
求得 C 1,K=
所以点C1(0,
).
易知△KBC1≌△GAD1,得AG=1,GD1=
,
∴点D1(3,
).
易知△OAD2∽△GAD1,
,
由AG=1,OA=2,GD1=
,
求得 OD2=1,
∴点D2(0,-1).
易知△TBC2≌△OD2A,得TC2=AO=2,BT=OD2=1,
所以点C2(-3,5).
∵抛物线E总过定点A(2,0)、B(-1,6),
∴符合条件的三点可能是A、B、C或A、B、D
当抛物线E经过A、B、C1时,将C1(0,
)代入y=t(x2-3x+2)+(1-t)(-2x+4),求得t1=-
;
当抛物线E经过A、B、D1,A、B、C2,A、B、D2时,可分别求得t2=
,t3=-
,t4=
.
∴满足条件的所有t的值为:-
;
,-
, ![]()
【解析】解:(1)【尝试】①将t=2代入抛物线E中,得:y=t(x2-3x+2)+(1-t)(-2x+4)=2x2-4x=2(x-1)2-2,
∴此时抛物线的顶点坐标为:(1,-2).
②将x=2代入y=t(x2-3x+2)+(1-t)(-2x+4),得 y=0,
∴点A(2,0)在抛物线E上.
③将x=-1代入抛物线E的解析式中,得:
n=t(x2-3x+2)+(1-t)(-2x+4)=6.(2)【发现】将抛物线E的解析式展开,得:
y=t(x2-3x+2)+(1-t)(-2x+4)=t(x-2)(x+1)-2x+4
∴抛物线E必过定点(2,0)、(-1,6).
-
科目: 来源: 题型:
查看答案和解析>>【题目】某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如表:
候选人
甲
乙
丙
丁
测试成绩
(百分制)
面试
86
92
90
83
笔试
90
83
83
92
如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们
和
的权.根据四人各自的平均成绩,公司将录取( )A. 甲 B. 乙 C. 丙 D. 丁
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知
,若
,
,
,下列结论:①
;②
;③
;④
与
互补;⑤
,其中正确的有( )
A.2个B.3个C.4个D.5个
-
科目: 来源: 题型:
查看答案和解析>>【题目】常州每年举行一次“一袋牛奶的暴走”公益活动,用步行的方式募集善款,其中挑战型路线”的起点是淹城站,并沿着规定的线路到达终点吾悦国际站.甲、乙两组市民从起点同时出发,已知甲组的速度为6km/h,乙组的速度为5km/h,当甲组到达终点后,立即以3km/h的速度按原线路返回,并在途中的P站与乙组相遇,P站与吾悦国际站之间的路程为1.5km
(1)求“挑战型路线”的总长;
(2)当甲组到达终点时,乙组离终点还有多少路程?

-
科目: 来源: 题型:
查看答案和解析>>【题目】两块等腰直角三角形纸片AOB和COD按图1所示放置,直角顶点重合在点O处,AB=25,CD=17.保持纸片AOB不动,将纸片COD绕点O逆时针旋转α(0°<α<90°)角度,如图2所示.

(1)利用图2证明AC=BD且AC⊥BD;
(2)当BD与CD在同一直线上(如图3)时,求AC的长和α的正弦值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,直线l:y=3x+3与x轴交于点A,与y轴交于点B.把△AOB沿y轴翻折,点A落到点C,抛物线过点B、C和D(3,0).

(1)求直线BD和抛物线的解析式.
(2)若BD与抛物线的对称轴交于点M,点N在坐标轴上,以点N、B、D为顶点的三角形与△MCD相似,求所有满足条件的点N的坐标.
(3)在抛物线上是否存在点P,使S△PBD=6?若存在,求出点P的坐标;若不存在,说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系xOy中,函数y=
(k1>0,x>0)、函数y=
(k2<0,x<0)的图象分别经过OABC的顶点A、C,点B在y轴正半轴上,AD⊥x轴于点D,CE⊥x轴于点E,若|k1|:|k2|=9:4,则AD:CE的值为( ) 
A.4:9
B.2:3
C.3:2
D.9:4
相关试题