【题目】阅读与理解:
折纸,常常能为证明一个命题提供思路和方法.例如,在△ABC中,AB>AC(如图),怎样证明∠C>∠B呢?
![]()
![]()
把AC沿∠A的角平分线AD翻折,因为AB>AC,所以点C落在AB上的点
处,即
,据以上操作,易证明
≌
,所以
,又因为
>∠B,所以∠C>∠B.
感悟与应用:
(1)如图(a),在△ABC中,∠ACB=90°,∠B=30°,CD平分∠ACB,试判断AC和AD、BC之间的数量关系,并说明理由;
(2)如图(b),在四边形ABCD中,AC平分∠BAD,AC=16,AD=8,DC=BC=12,
① 求证:∠B+∠D=180°;
② 求AB的长.
![]()
![]()
参考答案:
【答案】(1)BC-AC=AD;(2)①见解析;②14;
【解析】
(1)在CB上截取CE=CA,连接DE.可证△ACD≌△ECD,得到DE=AD,∠A=∠CED=60°,进一步得到∠CED=2∠CBA,由外角的性质得到∠CBA=∠BDE,由等角对等边得到DE=BE,即可得到结论.
(2)①在AB上截取AE=AD,连接EC.易证△CDA≌△CEA,从而得到∠CEA=∠D,CE=CD.由等量代换得到BC=CE,由等边对等角得到∠B=∠CEB.再由邻补角的性质即可得到结论;
②过C作CF⊥AB于F.设FB=x,CF=h.由等腰三角形三线合一得到FE=BF=x.在Rt△BFC和Rt△FCA中,分别利用勾股定理列方程,求解即可.
(1)BC-AC=AD.理由如下:
如图,在CB上截取CE=CA,连接DE.
∵CD平分∠ACB,同理可证△ACD≌△ECD,∴DE=AD,∠A=∠CED=60°.
∵∠ACB=90°,∴∠CBA=30°,∴∠CED=2∠CBA.
∵∠CED=∠CBA+∠BDE,∴∠CBA=∠BDE,∴DE=BE,∴AD=BE.
∵BE=BC-CE=BC-AC,∴BC-AC=AD.
![]()
![]()
(2)①在AB上截取AE=AD,连接EC.
∵AC平分∠DAB,∴∠EAC=∠DAC.在△CDA和△CEA中,∵EA=DA,∠EAC=∠DAC,AC=AC,∴△CEA≌△CDA,∴∠CEA=∠D,CE=CD.
∵DC=BC,∴BC=CE,∴∠B=∠CEB.
∵∠CEA+∠CEB=180°,∴∠B+∠D=180°;
②过C作CF⊥AB于F.设FB=x,CF=h.
∵CB=CE,CF⊥BE,∴FE=BF=x.在Rt△BFC中,∵BF2+CF2=BC2,∴
①;在Rt△FCA中,
②;解方程组①②得:x=3.∴AB=BF+FE+EA=2×3+8=14.
-
科目: 来源: 题型:
查看答案和解析>>【题目】父亲告诉小明:“距离地面越远,温度越低,”并给小明出示了下面的表格.
距离地面高度(千米)
0
1
2
3
4
5
温度(℃)
20
14
8
2
﹣4
﹣10
根据上表,父亲还给小明出了下面几个问题,你和小明一起回答.
(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?
(2)如果用h表示距离地面的高度,用t表示温度,那么随着h的变化,t是怎么变化的?
(3)你知道距离地面5千米的高空温度是多少吗?
(4)你能猜出距离地面6千米的高空温度是多少吗?
-
科目: 来源: 题型:
查看答案和解析>>【题目】解下列方程组:
(1)
(2)
(3)
(4)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,∠C=90°,⊙O是△ABC的内切圆,D、E、F是切点.
(1)求证:四边形ODCE是正方形;
(2)如果AC=6,BC=8,求内切圆⊙O的半径.

-
科目: 来源: 题型:
查看答案和解析>>【题目】烟台享有“苹果之乡”的美誉.甲、乙两超市分别用3000元以相同的进价购进质量相同的苹果.甲超市销售方案是:将苹果按大小分类包装销售,其中大苹果400千克,以进价的2倍价格销售,剩下的小苹果以高于进价10%销售.乙超市的销售方案是:不将苹果按大小分类,直接包装销售,价格按甲超市大、小两种苹果售价的平均数定价.若两超市将苹果全部售完,其中甲超市获利2100元(其它成本不计).问:
(1)苹果进价为每千克多少元?
(2)乙超市获利多少元?并比较哪种销售方式更合算.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(2,﹣1),B(1,﹣2),C(3,﹣3).
(1)将△ABC向上平移4个单位长度得到△A1B1C1,请画出△A1B1C1.
(2)请画出与△ABC关于y轴对称的△A2B2C2.
(3)请写出A1、A2的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】(本题12分)某乒乓球馆使用发球机进行辅助训练,出球口在桌面中线端点A处的正上方,假设每次发出的乒乓球的运动路线固定不变,且落在中线上,在乒乓球运行时,设乒乓球与端点A的水平距离为
(米),与桌面的高度为
(米),运行时间为
(秒),经多次测试后,得到如下部分数据:
(秒)0
0.16
0.2
0.4
0.6
0.64
0. 8
…
(米)0
0.4
0.5
1
1.5
1.6
2
…
(米)0.25
0.378
0.4
0.45
0.4
0.378
0.25
…
(1)当
为何值时,乒乓球达到最大高度?(2)乒乓球落在桌面时,与端点A的水平距离是多少?
(3)乒乓球落在桌面上弹起后,
与
满足
①用含
的代数式表示
;②球网高度为0.14米,球桌长(1.4×2)米,若球弹起后,恰好有唯一的击球点,可以将球沿直线扣杀到点A,求
的值.
相关试题