【题目】如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC的三个顶点的坐标分别为A(﹣3,4),B(﹣5,2),C(﹣2,1).![]()
(1)画出△ABC关于y轴对称图形△A1B1C1;
(2)画出将△ABC绕原点O逆时针方向旋转90°得到的△A2B2C2;
(3)求(2)中线段OA扫过的图形面积.
参考答案:
【答案】
(1)
解:如图,△A1B1C1即为所求;
![]()
(2)
解:如图,△A2B2C2即为所求;
![]()
(3)
解:∵OA=
=5,
∴线段OA扫过的图形面积=
=
π.
【解析】(1)分别作出各点关于y轴的对称点,再顺次连接即可;(2)根据图形旋转的性质画出旋转后的图形△A2B2C2即可;(3)利用扇形的面积公式即可得出结论.
【考点精析】本题主要考查了扇形面积计算公式和作轴对称图形的相关知识点,需要掌握在圆上,由两条半径和一段弧围成的图形叫做扇形;扇形面积S=π(R2-r2);画对称轴图形的方法:①标出关键点②数方格,标出对称点③依次连线才能正确解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系xOy中,点A的坐标为(4,﹣3),且OA=5,在x轴上确定一点P,使△AOP为等腰三角形.
(1)写出一个符合题意的点P的坐标 ;
(2)请在图中画出所有符合条件的△AOP.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知O是坐标原点,点A的坐标是(5,0),点B是y轴正半轴上一动点,以OB、OA为边作矩形OBCA,点E、H分别在边BC和边OA上,将△BOE沿着OE对折,使点B落在OC上的F点处,将△ACH沿着CH对折,使点A落在OC上的G点处.

(1)如图1,求证:四边形OECH是平行四边形;
(2)如图2,当点B运动到使得点F、G重合时,求点B的坐标,并判断四边形OECH是什么四边形?说明理由;
(3)当点B运动到使得点F,G将对角线OC三等分时,如图3,如图4,分别求点B的坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】电影《中国机长》是根据2018年5月14日川航3U8633航班的真实事件改编的,当时飞机挡风玻璃在高空爆裂,机组临危不乱、果断应对,顺利返航.下表给出了飞机距离地面高度
与所在位置温度
的部分统计数据,根据下表,请回答以下问题:距离地面高度
(千米)0
1
2
3
4
5
所在位置的温度
(℃)20
14
_____
2


(1)上表反映的两个变量中,________是自变量,________是因变量;
(2)用关系式表示上表两个变量之间的关系:________;
(3)如图是当日飞机下降过程中距地面高度
与玻璃爆裂后立即返回地面所用时间
的关系图.根据图象回答以下问题:
①返回途中飞机在2千米高空水平盘旋了几分钟?
②飞机盘旋时所在高空的温度是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为( )

A.6
B.4
C.3
D.3 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB=16,O为AB中点,点C在线段OB上(不与点O,B重合),将OC绕点O逆时针旋转270°后得到扇形COD,AP,BQ分别切优弧
于点P,Q,且点P,Q在AB异侧,连接OP. 
(1)求证:AP=BQ;
(2)当BQ=4
时,求
的长(结果保留π);
(3)若△APO的外心在扇形COD的内部,求OC的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】看图填空,并在括号内说明理由:
∵BD平分∠ABC(已知)
∴__________=__________(__________)
又∠1=∠D(已知)
∴__________=__________(__________)
∴__________∥__________(__________)
∴∠ABC+__________=180°(__________)
又∠ABC=55°(已知)
∴∠BCD=__________.

相关试题