【题目】如图:有一块余料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm.
(1)如果把它加工成长方形零件,使长方形的一边在BC上,其余两个顶点分别在AB、AC上,设长方形宽xmm,面积为ymm2,那么宽为多少时,其面积最大.最大面积是多少?
(2)若以BC的中点O为原点建立平面直角坐标系,B(-60,0),AD=BD.
求过A、B、C三点的抛物线解析式;
在此抛物线对称轴上是否存在一点R,使以A、B、R为顶点的三角形是直角三角形.若存在,请直接写出R点的坐标;若不存在,说明理由.
![]()
参考答案:
【答案】(1) 当x=40时,y最大值=2400 ;(2)
;(3)见解析.
【解析】分析:(1)设PQ=x,利用相似三角形的性质可得出QN=﹣
x+120,根据矩形的面积公式即可得出y=﹣
x2+120x,配方后即可找出面积的最大值;
(2)①依照题意画出图形,由AD的长度可得出点A的坐标,根据点A、B的坐标,利用待定系数法即可求出抛物线的解析式;
②设点R的坐标为(0,n),则AB=80
,AR=
,BR=
,分∠ABR=90°、∠ARB=90°和∠BAR=90°三种情况考虑,利用勾股定理即可得出关于n的一元一次(或一元二次)方程,解之即可得出结论.
详解:(1)∵PQ⊥BC,MN⊥BC,AD⊥BC,∴PQ∥AD,MN∥AD,∴△BPQ∽△BAD,△CAD∽△CMN,∴BQ=
BD,CN=
CD.
设PQ=x,则QN=BC﹣BQ﹣CN=120﹣
(BD+CD)=﹣
x+120,
∴y=PQQN=x(﹣
x+120)=﹣
x2+120x=﹣
(x﹣40)2+2400,
∴当x=40时,y取最大值2400,∴宽为40mm时,其面积最大.最大面积是2400mm2.
(2)①依照题意画出图形,如图所示.
设抛物线的解析式为y=ax2+c,将B(﹣60,0)、A(20,80)代入y=ax2+c,
,解得:
,∴过A、B、C三点的抛物线解析式为y=﹣
x2+90.
②假设存在,设点R的坐标为(0,n),则AB=80
,AR=
,BR=
.
分三种情况考虑:
①当∠ABR=90°时,有AR2=AB2+BR2,即400+(80﹣n)2=12800+3600+n2,解得:n=﹣60,此时点R的坐标为(0,﹣60);
②当∠ARB=90°时,有AB2=AR2+BR2,即12800=400+(80﹣n)2+3600+n2,整理得:n2﹣80n﹣1200=0,解得:n1=
,n2=
,此时点R的坐标为(0,
)或(0,
);
③当∠BAR=90°时,有BR2=AB2+AR2,即3600+n2=12800+400+(80﹣n)2,解得:n=100,此时点R的坐标为(0,100).
综上所述:在此抛物线对称轴上存在一点R,使以A、B、R为顶点的三角形是直角三角形,点R的坐标为(0,﹣60)或(0,
)或(0,
)或(0,100).
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】这是一根起点为0的数轴,现有同学将它弯折,如图所示, 例如:虚线上第一行0,第二行6,第三行21…,第9行的数是_____.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在
,O是AC上的一点,
与BC,AB分别切于点C,D, 与AC相交于点E,连接BO.(1) 求证:CE2=2DE
BO;(2) 若BC=CE=6,则AE= ,AD= .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积为______。

-
科目: 来源: 题型:
查看答案和解析>>【题目】2014年1月,国家发改委出台指导意见,要求2015年底前,所有城市原则上全面实行居民阶梯水价制度. 小军为了解市政府调整水价方案的社会反响,随机访问了自己居住在小区的部分居民,就“每月每户的用水量”和“调价对用水行为改变”两个问题进行调查,并把调查结果整理成下面的图1,图2.


小军发现每月每户的用水量在5m3-35m3之间,有7户居民对用水价格调价涨幅抱无所谓,不用考虑用水方式的改变. 根据小军绘制的图表和发现的信息,完成下列问题:
(1)n =________,小明调查了_____户居民,并补全图1;
(2)每月每户用水量的中位数落在______之间,众数落在_______之间;
(3)如果小明所在的小区有1200户居民,请你估计“视调价涨幅采取相应的用水方式改变”的居民户数有多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.
(1)若商场同时购进其中两种不同型号电视机共50台,用去9万元,请你研究一下商场的进货方案;
(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号电视机的方案中,为使销售利润最多,你选择哪一种进货方案?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中E是BC上的一点,EC=2BE,点D是AC的中点,则EF:AF=_____;若S△ABC=12,则S△ADF﹣S△BEF=_____.

相关试题