【题目】如图,一次函数
的图象与
轴交于点
,与正比例函数
的图象相交于点
,且
.
![]()
(1)分别求出这两个函数的解析式;
(2)求
的面积;
(3)点
在
轴上,且
是等腰三角形,请直接写出点
的坐标.
参考答案:
【答案】(1)
;
;(2)10;(3)
或
或
或![]()
【解析】
(1)根据点A坐标,可以求出正比例函数解析式,再求出点B坐标即可求出一次函数解析式.
(2)如图1中,过A作AD⊥y轴于D,求出AD即可解决问题.
(3)分三种情形讨论即可①OA=OP,②AO=AP,③PA=PO.
解:(1)
正比例函数
的图象经过点
,
,
,
正比例函数解析式为![]()
如图1中,过
作
轴于
,
在
中,
,![]()
![]()
![]()
![]()
![]()
解得![]()
一次函数解析式为![]()
(2)如图1中,过
作
轴于
,
![]()
![]()
![]()
(3))如图2中,当OP=OA时,P
(5,0),P
(5,0),
![]()
当AO=AP时,P
(8,0),
当PA=PO时,线段OA的垂直平分线为y=
,
∴P![]()
,
∴满足条件的点P的坐标
或
或
或![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】某大型超市从生产基地购进一批水果,运输过程中质量损失10%,假设不计超市其他费用,如果超市要想至少获得20%的利润,那么这种水果的售价在进价的基础上应至少提高【 】
A.40% B.33.4% C.33.3% D.30%
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在边长为12的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长EF交BC于点G.则BG的长为( )

A. 5 B. 4 C. 3 D. 2
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系xOy中,直线y=x-2与y轴相交于点A,与反比例函数y=
在第一象限内的图象相交于点B(m,2).(1)求该反比例函数的关系式;
(2)若直线y=x-2向上平移后与反比例函数y=
在第一象限内的图象相交于点C,且△ABC的面积为18,求平移后的直线对应的函数关系式.
-
科目: 来源: 题型:
查看答案和解析>>【题目】我市从2018年1月1日开始,禁止燃油助力车上路,于是电动自行车的市场需求量日渐增多.某商店计划最多投入8万元购进A、B两种型号的电动自行车共30辆,其中每辆B型电动自行车比每辆A型电动自行车多500元.用5万元购进的A型电动自行车与用6万元购进的B型电动自行车数量一样.
(1)求A、B两种型号电动自行车的进货单价;
(2)若A型电动自行车每辆售价为2800元,B型电动自行车每辆售价为3500元,设该商店计划购进A型电动自行车m辆,两种型号的电动自行车全部销售后可获利润y元.写出y与m之间的函数关系式;
(3)在(2)的条件下,该商店如何进货才能获得最大利润?此时最大利润是多少元?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,分别以AC、BC为边作等边三角形ACD和等边三角形BCE,连接AE、BD交于点O,则∠AOB的度数为________。

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知,如图A、B分别为数轴上的两点,A点对应的数为-10 ,B点对应的数为90.

(1)请写出AB的中点M对应的数.
(2)现在有一只电子蚂蚁P从B点出发,以3个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以2个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,
①你知道经过几秒两只电子蚂蚁相遇?
②点C对应的数是多少?
③经过多长时间两只电子蚂蚁在数轴上相距10个单位长度?
相关试题