【题目】请回答下列问题:
(1)叙述三角形中位线定理,并运用平行四边形的知识证明;
(2)运用三角形中位线的知识解决如下问题:如图,在四边形ABCD中,AD∥BC , E、F分别是AB , CD的中点,求证:EF=
(AD+BC)![]()
参考答案:
【答案】
(1)
三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.
已知:△ABC中,点E、F分别是AB、AC的中点,
求证:EF∥BC且EF=
BC,
证明:如图,延长EF到D,使FD=EF,
![]()
∵点F是AC的中点,
∴AF=CF,
在△AEF和△CDF中,
AF=FC
∠AFE=∠CFD
EF=FD
∴△AEF≌△CDF(SAS),
∴AE=CD,∠D=∠AEF,
∴AB∥CD,
∵点E是AB的中点,
∴AE=BE,
∴BE=CD,
∴BE
CD,
∴四边形BCDE是平行四边形,
∴DE∥BC,DE=BC,
∴DE∥BC且EF=
BC.
(2)
证明:连接AF并延长,交BC延长线于点M,
∵AD∥BC,
∴∠D=∠FCM,
∵F是CD中点,
∴DF=CF,
在△ADF和△MCF中,
∠D=∠FCM
DF=CF
∠AFD=∠MFC
∴△ADF≌△MCF(ASA),
∴AF=FM,AD=CM,
∴EF是△ABM的中位线,
∴EF∥BC∥AD,EF=BM=
(AD+BC).
【解析】(1)作出图形,然后写出已知、求证,延长EF到D , 使FD=EF , 利用“边角边”证明△AEF和△CDF全等,根据全等三角形对应边相等可得AE=CD , 全等三角形对应角相等可得∠D=∠AEF , 再求出CE=CD , 根据内错角相等,两直线平行判断出AB∥CD , 然后判断出四边形BCDE是平行四边形,根据平行四边形的性质可得DE∥BC , DE=BC.(2)连接AF并延长,交BC延长线于点M , 根据ASA证明△ADF≌△MCF , 判断EF是△ABM的中位线,根据三角形中位线定理即可得出结论 .
【考点精析】解答此题的关键在于理解三角形中位线定理的相关知识,掌握连接三角形两边中点的线段叫做三角形的中位线;三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半,以及对梯形的中位线的理解,了解梯形的中位线平行于梯形的两底并等于两底和的一半.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F , AB=5,AC=2,则DF的长为.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,若∠B=2∠C , AD⊥BC , E为BC边中点,求证:AB=2DE .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠ACB=90,D是BC延长线上一点,E是BD的垂直平分线与AB的交点,DE交AC于点F,求证:EA=EF.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知矩形ABCD,点E为BC的中点,将△ABE沿直线AE折叠,点B落在B′点处,连接B′C

(1)求证:AE∥B′C;
(2)若AB=4,BC=6,求线段B′C的长。
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,∠C=Rt∠,AC=8cm,BC=6cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒2cm,设运动的时间为t秒。

(1)当t为何值时,CP把△ABC的周长分成相等的两部分。
(2)当t为何值时,CP把△ABC的面积分成相等的两部分,并求出此时CP的长;
(3)当t为何值时,△BCP为等腰三角形?
-
科目: 来源: 题型:
查看答案和解析>>【题目】在梯形ABCD中,AD∥BC , AB=CD , ∠AOD=60°,E为OA的中点,F为OB的中点,G为CD的中点,试判断△EFG的形状并说明理由 .

相关试题