【题目】如图,在△ABC,∠ACB=90,DBC延长线上一点,EBD的垂直平分线与AB的交点,DEAC于点F,求证:EA=EF.


参考答案:

【答案】详见解析.

【解析】

EEG垂直于AC,ACG,可得出EG∥BD∠AEG=∠B, ∠D=∠DEG.再根据EBD的垂直平分线与AB的交点可得出∠B=∠D,根据ASA定理得出△AEG≌△FEG,进而可得出结论.

证明:过EEG垂直于AC,交ACG,

∵∠ACB=90°,

∴EG//BD,

∴∠AEG=∠B,D=DEG.

EBD的垂直平分线与AB的交点,

BE=DE,

∴∠B=D,

∴∠AEG=DEG.

AEGFEG中,

AEG=FEG

EG=EG

AGE=FGE,

AEGFEG (ASA),

∴EA=EF.

关闭