【题目】如图,已知矩形OABC中,OA=3,AB=4,双曲线y=
(k>0)与矩形两边AB、BC分别交于D、E,且BD=2AD
(1)求k的值和点E的坐标;
(2)点P是线段OC上的一个动点,是否存在点P,使∠APE=90°?若存在,求出此时点P的坐标,若不存在,请说明理由.
![]()
参考答案:
【答案】(1)k="4," E(4,1);(2)存在要求的点P,坐标为(1,0)或(3,0).
【解析】试题分析:(1)由矩形ABCD中,AB=4,BD=2AD,可得3AD=4,即可求得 AD的长,然后求得点D的坐标,即可求得K的值,继而求得点 E的坐标;(2)首先假设存在要求的点P坐标为(m,0),OP=m,CP=4-m,由∠APE=90,易证得△AOP∽△PCE,然后由相似三角形的对应边成比例,求得m的值,继而求得此时点P的坐标.
试题解析:(9分)(1)∵AB=4,BD=2AD,∴AB=AD+BD=AD+2AD=3AD=4,∴AD=
,
又∵OA=3,所以D(
,3),∵点D在双曲线
上,所以k=
×3=4.
∵四边形OABC为矩形,∴AB=OC=4,∴点E的横坐标为4.
把x=4代入
中,得y=1,所以E(4,1).
(2)假设存在要求的点P坐标为(m,0),OP=m,CP=4-m.
∵∠APE=90,∴∠APO+∠EPC=90,又∵∠APO+∠OAP=90, ∴∠EPC=∠OAP,
又∵∠AOP=∠PCE=90,∴△AOP∽△PCE,∴
,
∴
,解得:m=1或m=3.
所以,存在要求的点P,坐标为(1,0)或(3,0).
-
科目: 来源: 题型:
查看答案和解析>>【题目】某市“全国文明村”白村果农王保收获枇杷20吨,桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.
(1)王保如何安排甲、乙两种货车可一次性地运到销售地?有几种方案?
(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王保应选择哪种方案,使运输费最少?最少运费是多少? -
科目: 来源: 题型:
查看答案和解析>>【题目】用“>”或“<”填空:若a<b,则﹣2a+1__﹣2b+1.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE∥BD,过点D作ED∥AC,两线相交于点E.

(1)求证:四边形AODE是菱形;
(2)连接BE,交AC于点F.若BE⊥ED于点E,求∠AOD的度数. -
科目: 来源: 题型:
查看答案和解析>>【题目】下面的图象反映的过程是:小明从家去超市买文具,又去书店购书,然后回家.其中x表示时间,y表示小明离他家的距离,若小明家、超市、书店在同一条直线上.
根据图象回答下列问题:
(1)超市离小明家多远,小明走到超市用了多少时间?
(2)超市离书店多远,小明在书店购书用了多少时间?
(3)书店离小明家多远,小明从书店走回家的平均速度是每分钟多少米? -
科目: 来源: 题型:
查看答案和解析>>【题目】(2016湖北襄阳第20题)
如图,直线y=ax+b与反比例函数y=
(x>0)的图象交于A(1,4),B(4,n)两点,与x轴,y轴分别交干C,D两点.(1)m= ,n= ;若M(xl,y1),N(x2,y2)是反比例函数图象上两点,且0<xl<x2,则yl y2(填“<”或“=”或“>”);
(2)若线段CD上的点P到x轴,y轴的距离相等.求点P的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】把方程x(x+1)=2化成一般形式是 .
相关试题