【题目】如图以△ABC的一边AB为直径作⊙O,⊙O与BC边的交点D恰好为BC的中点,过点D作⊙O的切线交AC边于点F.
![]()
(1)求证:DF⊥AC;
(2)若∠ABC=30°,求tan∠BCO的值.
参考答案:
【答案】(1)证明见解析; (2) tan∠BCO=
.
【解析】试题分析:(1)连接OD,根据三角形的中位线定理可求出OD∥AC,根据切线的性质可证明DE⊥OD,进而得证.
(2)过O作OF⊥BD,根据等腰三角形的性质及三角函数的定义用OB表示出OF、CF的长,根据三角函数的定义求解.
试题解析:证明:连接OD
∵DE为⊙O的切线, ∴OD⊥DE
∵O为AB中点, D为BC的中点
∴OD‖AC
∴DE⊥AC
(2)过O作OF⊥BD,则BF=FD
在Rt△BFO中,∠ABC=30°
∴OF=
, BF=
∵BD=DC, BF=FD,
∴FC=3BF=
在Rt△OFC中,tan∠BCO=
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】矩形(非正方形)四个内角的平分线围成的四边形是__________形.(埴特殊四边形)
-
科目: 来源: 题型:
查看答案和解析>>【题目】我们定义:
在一个三角形中,如果一个角的度数是另一个角的度数
倍,那么这样的三角形我们称之为“和谐三角形”.如:三个内角分别为
,
,
的三角形是“和谐三角形”概念理解:
如图,
,在射线
上找一点
,过点
作
交
于点
,以
为端点作射线
,交线段
于点
(点
不与
重合)
(1)
的度数为 ,
(填“是”或“不是”)“和谐三角形”(2)若
,求证:
是“和谐三角形”.应用拓展:
如图,点
在
的边
上,连接
,作
的平分线
交于点
,在
上取点
,使
,
.若
是“和谐三角形”,求
的度数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABD和△ACE中,AB=AD,AC=AE,∠BAD=∠CAE,连接BC、DE相交于点F,BC与AD相交于点G.

(1)试判断线段BC、DE的数量关系,并说明理由;
(2)若BC平分∠ABD,求证线段FD是线段FG 和 FB的比例中项.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在ABC中,AB=AC=6
,∠BAC=90°,点D、E为BC边上的两点,分别沿AD、AE折叠,B、C两点重合于点F,若DE=5,则AD的长为_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了响应政府“绿色出行”的号召,李华选择骑自行车到郊外游玩,她离家的距离与时间的关系如图所示,请根据图像回答下列问题.

(1)李华到达离家最远的地方是几时?此时离家多远?
(2)李华返回时的速度是多少?
(3)李华全程骑车的平均速度是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,现有一个均匀的转盘被平均分成6等份,分别标有数字2、3、4、5、6、7这六个数字,转动转盘,当转盘停止时,指针指向的数字即为转出的数字.求:

(1)转动转盘,转出的数字大于3的概率是多少?
(2)现有两张分别写有3和4的卡片,要随机转动转盘,转盘停止后记下转出的数字,与两张卡片上的数字分别作为三条线段的长度.这三条线段能构成三角形的概率是多少?
相关试题