【题目】已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①abc>0,②a﹣b+c<0,③2a=b,④4a+2b+c>0,⑤若点(﹣2,y1)和(﹣
,y2)在该图象上,则y1>y2 . 其中正确的结论是(填入正确结论的序号). ![]()
参考答案:
【答案】②④
【解析】解:
∵二次函数开口向下,且与y轴的交点在x轴上方,
∴a<0,c>0,
∵对称轴为x=1,
∴﹣
=1,
∴b=﹣2a>0,
∴abc<0,
故①、③都不正确;
∵当x=﹣1时,y<0,
∴a﹣b+c<0,
故②正确;
由抛物线的对称性可知抛物线与x轴的另一交点在2和3之间,
∴当x=2时,y>0,
∴4a+2b+c>0,
故④正确;
∵抛物线开口向下,对称轴为x=1,
∴当x<1时,y随x的增大而增大,
∵﹣2<﹣
,
∴y1<y2 ,
故⑤不正确;
综上可知正确的为②④,
所以答案是:②④.
【考点精析】掌握二次函数图象以及系数a、b、c的关系是解答本题的根本,需要知道二次函数y=ax2+bx+c中,a、b、c的含义:a表示开口方向:a>0时,抛物线开口向上; a<0时,抛物线开口向下b与对称轴有关:对称轴为x=-b/2a;c表示抛物线与y轴的交点坐标:(0,c).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,矩形 ABCD 的对角线 AC 与 BD 相交于点 O,CE∥BD,DE∥AC.
(1)求证:四边形 OCED 为菱形
(2)若AD=7,AB=4,求四边形 OCED的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】老师在黑板上出了一道解方程的题:
,小明马上举起了手,要求到黑板上去做,他是这样做的:去分母,得4(2x-1)=1-3(x+2). ①
去括号,得8x-4=1-3x-6. ②
移项,得8x+3x=l-6+4 . ③
合并同类项,得11x=-1. ④
系数化为1,得x=-
. ⑤老师说:小明解一元一次方程的一般步骤都掌握了,但解题时有一步做错了,他错在第 步(填编号),请你将正确的解方程过程写出来.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知数轴上点A表示的数为6,B是数轴上在A左侧的一点,且A,B两点间的距离为10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.
(1)数轴上点B表示的数是 ,点P表示的数是 (用含t的代数式表示);
(2)动点Q从点B出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发.求:
①当点P运动多少秒时,点P与点Q相遇?
②当点P运动多少秒时,点P与点Q间的距离为8个单位长度?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,平行四边形ABCD中,AB=3cm,BC=5cm,∠B=60°,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连结CE,DF.

(1)求证:四边形CEDF是平行四边形;
(2)①当AE= cm时,四边形CEDF是矩形;②当AE= cm时,四边形CEDF是菱形.(直接写出答案,不需要说明理由)
-
科目: 来源: 题型:
查看答案和解析>>【题目】二次函数中y=ax2+bx﹣3的x、y满足表:
x
…
﹣1
0
1
2
3
…
y
…
0
﹣3
﹣4
﹣3
m
…
(1)求该二次函数的解析式;
(2)求m的值并直接写出对称轴及顶点坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点E是正方形ABCD的边DC上一点,把△ADE顺时针旋转△ABF的位置.

(1)旋转中心是点 , 旋转角度是度;
(2)若连结EF,则△AEF是三角形;并证明;
(3)若四边形AECF的面积为25,DE=2,求AE的长.
相关试题