【题目】如图,某容器由A、B、C三个连通长方体组成,其中A、B、C的底面积分别为25cm2、10cm2、5cm2,C的容积是整个容器容积的
(容器各面的厚度忽略不计),A、B的总高度为12厘米.现以均匀的速度(单位:cm3/min)向容器内注水,直到注满为止.已知单独注满A、B分别需要的时间为10分钟、8分钟.
(1)求注满整个容器所需的总时间;
(2)设容器A的高度为xcm,则容器B的高度为 cm;
(3)求容器A的高度和注水的速度.
![]()
参考答案:
【答案】(1)24分钟;(2)12-x;(3)4cm,10cm3/分
【解析】
试题(1)由注满A、B分别需要的时间为10分钟、8分钟,可知注满A、B共需要18分钟,再由C占整个容器容积的
,可知A、B共占整个容器容积的
,由此可得总时间;
(2)由A、B的总高度为12cm,A的高度为xcm,据此即可得B的高度为(12-x)cm;
(3)根据注水的速度不变,可得
,代入相关数据列方程求解即可.
试题解析:(1)(8+10)÷(1-
)=24(分钟),
答:注满整个容积需要24分钟;
(2)由A、B的总高度为12cm,A的高度为xcm,所以B的高度为(12-x)cm,
故答案为:(12-x);
(3)由题意得:
,
解得:x=4,
=10,
答:容器A的高度是4cm,注水的速度是10cm3/分.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:

①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP; ⑤∠AOB=60°.
其中正确的结论的个数是( )
A. 2个 B. 3个 C. 4个 D. 5个
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠B=90°,AC=10cm,BC=6cm,现有两点P,Q分别从点A和点C同时出发,沿边AB,CB向终点B移动.其中点P,Q的速度分别为2cm/s,1cm/s,且当其中一点到达终点时,另一点也随之停止移动.设P,Q两点移动时间为x s.

(1)用含x的代数式表示BQ、BP的长度,并求x的取值范围.
(2)设四边形APQC的面积为y(cm2),求y与x的函数关系式?
(3)是否存在这样的x,使得四边形APQC的面积是△ABC面积的
?如果存在,求出x的值;不存在请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知代数式
,当
时,该代数式的值为3.(1)求c的值;
(2)已知:当
时,该代数式的值为0.①求:当
时,该代数式的值;②若
,
,
,试比较a与d的大小,并说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】阅读下面材料:点 A、B 在数轴上分别表示两个数 a、b,A、B 两点间的距离记为|AB|,O 表示原点当 A、B 两点中有一点在原点时,不妨设点 A 为原点, 如图 1,则|AB|=|OB|=|b|=|a﹣b|;当 A、B 两点都不在原点时,
①如图 2,若点 A、B 都在原点的右边时,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|
②如图 3,若点 A、B 都在原点的左边时,|AB|=|OB|﹣|OA|=|b|﹣|a|=|﹣b﹣(﹣a)=|a﹣b|;
③如图 4,若点 A、B 在原点的两边时,|AB|=|OB|+|OA|=|b|+|a|=﹣b+a=|a﹣b|. 回答下列问题:综上所述,数轴上 A、B 两点间的距离为|AB|=|a﹣b|
(1)若数轴上的点 A 表示的数为﹣1,点 B 表示的数为 9,则 A、B 两点间的距离为
(2)若数轴上的点 A 表示的数为﹣1,动点 P 从点 A 出发沿数轴正方向运动, 点 P 的速度是每秒 4 个单位长度,t 秒后点 P 表示的数可表示为
(3)若点 A 表示的数﹣1,点 B 表示的数 9,动点 P、Q 分别同时从 A、B 出发沿数轴正方向运动,点 P 的速度是每秒 4 个单位长度,点 Q 的速度是每秒 2 个单位长度,求:运动几秒时,点 P 可以追上点 Q?(请写出必要的求解过程)

(4)若点 A 表示的数﹣1,点 B 表示的数 9,动点 P、Q 分别同时从 A、B 出发沿数轴正方向运动,点 P 的速度是每秒 4 个单位长度,点 Q 的速度是每秒 2 个单位长度,求运动几秒时,P、Q 两点相距 5 个单位长度?(请写出必要的求解过程)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1所示,在Rt△ABC中,∠C=90°,点D是线段CA延长线上一点,且AD=AB.点F是线段AB上一点,连接DF,以DF为斜边作等腰Rt△DFE,连接EA,EA满足条件EA⊥AB.

(1)若∠AEF=20°,∠ADE=50°,AC=2,求AB的长度;
(2)求证:AE=AF+BC;
(3)如图2,点F是线段BA延长线上一点,探究AE、AF、BC之间的数量关系,并证明.
-
科目: 来源: 题型:
查看答案和解析>>【题目】“十一”长假期间,小张和小李决定骑自行车外出旅游,两人相约一早从各自家中出发,已知两家相距10千米,小张出发必过小李家.
(1)若两人同时出发,小张车速为20千米,小李车速为15千米,经过多少小时能相遇?
(2)若小李的车速为10千米,小张提前20分钟出发,两人商定小李出发后半小时二人相遇,则小张的车速应为多少?
相关试题