【题目】如图,⊙O的半径OD⊥弦AB于点C,连接BO并延长交⊙O于点E,连接AE,若AB=6,CD=1,则AE的长为( )
![]()
A. 3
B. 8 C. 12 D. 8![]()
参考答案:
【答案】B
【解析】分析:设⊙O的半径为R,由OD⊥AB,根据垂径定理得AC=BC=
AB=3,在Rt△AOC中,OA=R,OC=R-CD=R-1,根据勾股定理得到(R-1)2+32=R2,解得R=5,则OC=1,由于OC为△ABE的中位线,即可求出AE的长度.
详解:设⊙O的半径为R,如图,
![]()
∵OD⊥AB,
∴AC=BC=
AB=
×6=3,
在Rt△AOC中,OA=R,OC=R-CD=R-1,
∵OC2+AC2=OA2,
∴(R-1)2+32=R2,解得R=5,
∴OC=5-1=4,
∴AE=2OC=8,
故选:B.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD是平行四边形,点A(2,0),B(6,2),C(6,6),反比例函数y1=
(x>0)的图象过点D,点P是一次函数y2=kx+3﹣3k(k≠0)的图象与该反比例函数的一个公共点,对于下面四个结论:①反比例函数的解析式是y1=
;②一次函数y2=kx+3﹣3k(k≠0)的图象一定经过(6,6)点;
③若一次函数y2=kx+3﹣3k的图象经过点C,当x>2
时,y1<y2;④对于一次函数y2=kx+3﹣3k(k≠0),当y随x的增大而增大时,点P横坐标a的取值范围是0<a<3.
其中正确的是( )

A. ①③ B. ②③ C. ②④ D. ③④
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,正方形ABCD的边长为1,AC,BD是对角线,将△DCB绕着点D顺时针旋转45°得到△DGH,HG交AB于点E,连接DE交AC于点F,连接FG.则下列结论:
①四边形AEGF是菱形;②△HED的面积是1﹣
;③∠AFG=112.5°;④BC+FG=
.其中正确的结论是( )
A. ①②③ B. ①②④ C. ①③④ D. ②③④
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一次函数y=kx+b与反比例函数
的图象交于点A(1,6),B(3,n)两点.(1)求一次函数的表达式;
(2)在y轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标及△PAB的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在矩形ABCD中,AB=4,BC=6,动点P为矩形边上的一点,点P沿着B﹣C的路径运动(含点B和点C),则△ADP的外接圆的圆心O的运动路径长是_____.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某地图书馆为了满足群众多样化阅读的需求,决定购买甲、乙两种品牌的电脑若干组建电子阅览室.经了解,甲、乙两种品牌的电脑单价分别3100元和4600元.
(1)若购买甲、乙两种品牌的电脑共50台,恰好支出200000元,求甲、乙两种品牌的电脑各购买了多少台?
(2)若购买甲、乙两种品牌的电脑共50台,每种品牌至少购买一台,且支出不超过160000元,共有几种购买方案?并说明哪种方案最省钱.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点D是⊙O直径CA的延长线上一点,点B在⊙O上,且AB=AD=AO.
(1)求证:BD是⊙O的切线;
(2)若点E是劣弧BC上一点,弦AE与BC相交于点F,且CF=9,cos∠BFA=
,求EF的长.
相关试题