【题目】如图1,在矩形ABCD中,P为CD边上一点(DP<CP),∠APB=90°.M在AB上,且∠APM=∠APD,过点B作BN∥MP交DC于点N.
![]()
(1)求证:四边形PMBN是菱形;
(2)求证:ADBC=DPPC;
(3)如图2,连接AC,分别交PM,PB于点E,F,若DP=1,AD=2,求
的值.
参考答案:
【答案】(1)证明见解析;(2)证明见解析;(3)
【解析】
(1)DP∥AB,所以∠DPA=∠PAM,由题意可知:∠DPA=∠APM,所以∠PAM=∠APM,由于∠APB﹣∠PAM=∠APB﹣∠APM,即∠ABP=∠MPB,从而可知PM=MB=AM,又易证四边形PMBN是平行四边形,所以四边形PMBN是菱形;
(2)根据余角的性质得到∠DAP=∠BPC,根据相似三角形的性质即可得到结论;
(3)根据矩形的性质得到BC=AD=2,求得AB=CD=5,根据平行线的性质得到∠APD=∠PAM,推出AM=MP,得到AM=MB=
,根据相似三角形的性质得到
,求得
,根据相似三角形的性质得到
,得到
,于是得到结论.
(1)证明:在矩形ABCD中,DC∥AB,
∵BN∥MP,
∴四边形PMBN是平行四边形,
∵∠APB=90°,
∴∠APM+∠BPM=90°,
∠APD+∠BPC=90°,
∵∠APM=∠APD,
∴∠BPM=∠BPC,
∵DC∥AB,
∴∠BPC=∠PBM,
∵∠BPM=∠PBM
∴MP=MB,
∴平行四边形PMBN是菱形;
(2)证明:在矩形ABCD中,∠D=∠C=90°,
∴∠APD+∠DAP=90°,
∵∠APD+∠BPC=90°,
∴∠DAP=∠BPC,
∴△ADP∽△PCB,
∴
,
∴ADBC=DPPC;
(3)解:∵四边形ABCD是矩形,
∴BC=AD=2,
由(2)得ADBC=DPPC
∴PC=4,
∴AB=CD=5,
在矩形ABCD中,DC∥AB,
∴∠APD=∠PAM,
∵∠APM=∠APD,
∴∠PAM=∠APM,
∴AM=MP,
由(1)得MP=MB,
∴AM=MB=
,
∵DC∥AB,
∴∠PCA=∠CAB,
∵∠PFC=∠BFA,
∴△PCF∽△BAF,
∴
,
∴
,
同理可得△PCE∽△MAE,
∴
,
∴
,
∴EF=AC﹣CF﹣AE=
AC,
∴
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】有2部不同的电影A、B,甲、乙、丙3人分别从中任意选择1部观看.
(1)求甲选择A部电影的概率;
(2)求甲、乙、丙3人选择同一部电影的概率(请用画树状图的方法给出分析过程,并求出结果)
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知二次函数y=x2﹣4x+3.
(1)求该二次函数与x轴的交点坐标和顶点;
(2)在所给坐标系中画出该二次函数的大致图象,并写出当y<0时,x的取值范围.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,一次函数y1=ax+b的图象与反比例函数y2=
的图象交于点A(1,2)和B(﹣2,m).(1)求一次函数和反比例函数的表达式;
(2)请直接写出y1≥y2时x的取值范围;
(3)过点B作BE∥x轴,AD⊥BE于点D,点C是直线BE上一点,若∠DAC=30°,求点C的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直角△ABC中,∠A为直角,AB=6,AC=8.点P、Q、R分别在AB、BC、CA边上同时开始作匀速运动,2秒后三个点同时停止运动,点P由点A出发以每秒3个单位的速度向点B运动,点Q由点B出发以每秒5个单位的速度向点C运动,点R由点C出发以每秒4个单位的速度向点A运动,用t(秒)(0≤t≤2)表示运动时间,在运动过程中:
(1)当t为何值时,△APR的面积为4;
(2)求出△CRQ的最大面积;
(3)是否存在t,使∠PQR=90°?若存在,请求出t的值;若不存在,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点A,B,C是⊙O上的三个点,点D在BC的延长线上.有如下四个结论:①在∠ABC所对的弧上存在一点E,使得∠BCE=∠DCE;②在∠ABC所对的弧上存在一点E,使得∠BAE=∠AEC;③在∠ABC所对的弧上存在一点E,使得EO平分∠AEC;④在∠ABC所对的弧上任意取一点E(不与点A,C重合) ,∠DCE=∠ABO +∠AEO均成立.上述结论中,所有正确结论的序号是( )

A. ①②③ B. ①③④ C. ②④ D. ①②③④
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,Rt△ABC中,∠C=90°,P是CB边上一动点,连接AP,作PQ⊥AP交AB于Q.已知AC=3cm,BC=6cm,设PC的长度为xcm,BQ的长度为ycm.
小青同学根据学习函数的经验对函数y随自变量x的变化而变化的规律进行了探究.
下面是小青同学的探究过程,请补充完整:
(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y的几组对应值;
x/cm
0
0.5
1.0
1.5
2.0
2.5
3
3.5
4
4.5
5
6
y/cm
0
1.56
2.24
2.51
m
2.45
2.24
1.96
1.63
1.26
0.86
0
(说明:补全表格时,相关数据保留一位小数)
m的值约为多少cm;
(2)在平面直角坐标系中,描出以补全后的表格中各组数值所对应的点(x,y),画出该函数的图象;

(3)结合画出的函数图象,解决问题:
①当y>2时,写出对应的x的取值范围;
②若点P不与B,C两点重合,是否存在点P,使得BQ=BP?
相关试题