【题目】有2部不同的电影A、B,甲、乙、丙3人分别从中任意选择1部观看.
(1)求甲选择A部电影的概率;
(2)求甲、乙、丙3人选择同一部电影的概率(请用画树状图的方法给出分析过程,并求出结果)
参考答案:
【答案】(1)甲选择A部电影的概率为
;(2)甲、乙、丙3人选择同一部电影的概率为
.
【解析】(1)甲可选择电影A或B,根据概率公式即可得甲选择A部电影的概率.
(2)用树状图表示甲、乙、丙3人选择电影的所有情况,由图可知总共有8种情况,甲、乙、丙3人选择同一部电影的情况有2种,根据概率公式即可得出答案.
(1)∵甲可选择电影A或B,∴甲选择A部电影的概率P=
,
答:甲选择A部电影的概率为
;
(2)甲、乙、丙3人选择电影情况如图:
![]()
由图可知总共有8种情况,甲、乙、丙3人选择同一部电影的情况有2种,
∴甲、乙、丙3人选择同一部电影的概率P=
,
答:甲、乙、丙3人选择同一部电影的概率为
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如果一次函数
的图象与
轴交点坐标为
,如图所示.则下列说法:①
随
的增大而减小;②关于
的方程
的解为
;③
的解是
;④
.其中正确的说法有_____.(只填你认为正确说法的序号)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,某水平地面上建筑物的高度为AB,在点D和点F处分别竖立高是2米的标杆CD和EF,两标杆相隔52米,并且建筑物AB,标杆CD和EF在同一竖直平面内,从标杆CD后退2米到点G处,在G处测得建筑物顶端A和标杆顶端C在同一条直线上;从标杆FE后退4米到点H处,在H处测得建筑物顶端A和标杆顶端E在同一条直线上,求建筑物的高.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知在平面直角坐标系中,∠2=2∠1,点C为x轴正半轴上的一动点.
(1)求∠1的度数;
(2)若OF∥AC,OE∥AB,求证:∠EOF=∠EAF;
(3)点C在运动中,若∠1=∠ACO,试判断AB与AC有怎样的位置关系,并说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一电线杆AB的影子分别落在了地上和墙上.同一时刻,小明竖起1米高的直杆MN,量得其影长MF为0.5米,量得电线杆AB落在地上的影子BD长3米,落在墙上的影子CD的高为2米.你能利用小明测量的数据算出电线杆AB的高吗?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB=AC,AE是∠BAC的平分线,∠ABC的平分线BM交AE于点M,点O在AB上,以点O为圆心,OB的长为半径的圆经过点M,交BC于点G,交AB于点F.

(1)求证:AE为⊙O的切线;
(2)当BC=4,AC=6时,求⊙O的半径;
(3)在(2)的条件下,求线段BG的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,将直角△ABC沿斜边AC的方向平移到△DEF的位置,,ED交BC于点G,BG=4,EF=10,△BEG的面积为4,下列结论:①∠A=∠BED;②△ABC平移的距离是4;③BE=CF;④四边形GCFE的面积为16,正确的有( )

A. ②③B. ①②③C. ①③④D. ①②③④
相关试题