【题目】如图,Rt△ABC中,∠C=90°,P是CB边上一动点,连接AP,作PQ⊥AP交AB于Q.已知AC=3cm,BC=6cm,设PC的长度为xcm,BQ的长度为ycm.
小青同学根据学习函数的经验对函数y随自变量x的变化而变化的规律进行了探究.
下面是小青同学的探究过程,请补充完整:
(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y的几组对应值;
x/cm | 0 | 0.5 | 1.0 | 1.5 | 2.0 | 2.5 | 3 | 3.5 | 4 | 4.5 | 5 | 6 |
y/cm | 0 | 1.56 | 2.24 | 2.51 | m | 2.45 | 2.24 | 1.96 | 1.63 | 1.26 | 0.86 | 0 |
(说明:补全表格时,相关数据保留一位小数)
m的值约为多少cm;
(2)在平面直角坐标系中,描出以补全后的表格中各组数值所对应的点(x,y),画出该函数的图象;
![]()
(3)结合画出的函数图象,解决问题:
①当y>2时,写出对应的x的取值范围;
②若点P不与B,C两点重合,是否存在点P,使得BQ=BP?
参考答案:
【答案】(1)根据题意量取数据m为2.6;(2)如图见解析;(3)①0.8<x<3.5,②不存在,理由见解析.
【解析】
(1)根据题意量取数据即可得出m
(2)根据已知数据描点连线得
(3)①由图象信息即可得出x的范围
②根据三角形内角和判断即可.
(1)根据题意量取数据m为2.6,
(2)根据已知数据描点连线得
![]()
(3)①由图象可得,当0.8<x<3.5时,y>2.
②不存在,
理由如下:若BQ=BP
∴∠BPQ=∠BQP
∵∠BQP=∠APQ+∠PAQ>90°
∴∠BPQ+∠BQP+∠QBP>180°与三角形内角和为180°相矛盾.
∴不存在点P,使得BQ=BP.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在矩形ABCD中,P为CD边上一点(DP<CP),∠APB=90°.M在AB上,且∠APM=∠APD,过点B作BN∥MP交DC于点N.

(1)求证:四边形PMBN是菱形;
(2)求证:ADBC=DPPC;
(3)如图2,连接AC,分别交PM,PB于点E,F,若DP=1,AD=2,求
的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直角△ABC中,∠A为直角,AB=6,AC=8.点P、Q、R分别在AB、BC、CA边上同时开始作匀速运动,2秒后三个点同时停止运动,点P由点A出发以每秒3个单位的速度向点B运动,点Q由点B出发以每秒5个单位的速度向点C运动,点R由点C出发以每秒4个单位的速度向点A运动,用t(秒)(0≤t≤2)表示运动时间,在运动过程中:
(1)当t为何值时,△APR的面积为4;
(2)求出△CRQ的最大面积;
(3)是否存在t,使∠PQR=90°?若存在,请求出t的值;若不存在,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点A,B,C是⊙O上的三个点,点D在BC的延长线上.有如下四个结论:①在∠ABC所对的弧上存在一点E,使得∠BCE=∠DCE;②在∠ABC所对的弧上存在一点E,使得∠BAE=∠AEC;③在∠ABC所对的弧上存在一点E,使得EO平分∠AEC;④在∠ABC所对的弧上任意取一点E(不与点A,C重合) ,∠DCE=∠ABO +∠AEO均成立.上述结论中,所有正确结论的序号是( )

A. ①②③ B. ①③④ C. ②④ D. ①②③④
-
科目: 来源: 题型:
查看答案和解析>>【题目】下面是小松设计的“做圆的内接等腰直角三角形”的尺规作图过程.
已知:⊙O.

求作:⊙O的内接等腰直角三角形.
作法:如图,
①作直径AB;

②分别以点A,B为圆心,以大于
的同样长为半径作弧,两弧交于M,N两点;③作直线MN交⊙O于点C,D;
④连接AC,BC.
所以△ABC就是所求作的三角形.
根据小松设计的尺规作图过程,
(1)使用直尺和圆规,补全图形;(保留作图痕迹)
(2)完成下面的证明.
证明:∵AB是直径, C是⊙O上一点
∴ ∠ACB= ( ) (填写推理依据)
∵AC=BC( )(填写推理依据)
∴△ABC是等腰直角三角形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在测量“河流宽度”的综合与实践活动中,小李同学设计的方案及测量数据如下:在河对岸边选定一个目标点A,在近岸取点B,C,D (点B,C,D在同一条直线上),AB⊥BD,∠ACB=45°,CD=20米,且.若测得∠ADB=25°,请你帮助小李求河的宽度AB.(sin25°≈0.42,cos25°≈0.91,tan25°≈0.47,结果精确到0.1米).

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系xOy中,A(0,3),B(1,0),连接BA,将线段BA绕点B顺时针旋转90°得到线段BC,反比例函数y=
的图象G经过点C.(1)请直接写出点C的坐标及k的值;
(2)若点P在图象G上,且∠POB=∠BAO,求点P的坐标;
(3)在(2)的条件下,若Q(0,m)为y轴正半轴上一点,过点Q作x轴的平行线与图象G交于点M,与直线OP交于点N,若点M在点N左侧,结合图象,直接写出m的取值范围.

相关试题