【题目】如图所示,已知OB,OC是∠AOD内部的两条射线,OM平分∠AOB,ON平分∠COD.
![]()
(1)若∠BOC=25°,∠MOB=15°,∠NOD=10°,求∠AOD的大小;
(2)若∠AOD=75°,∠MON=55°,求∠BOC的大小;
(3)若∠AOD=α,∠MON=β,求∠BOC的大小(用含α,β的式子表示).
参考答案:
【答案】(1)∠AOD= 75°;(2)∠BOC=35°;(3)
.
【解析】
(1)利用角平分线的定义可得∠AOB=2∠MOB=30°,∠COD=2∠NOD=20°,然后利用∠AOD=∠AOB+∠BOC+∠COD,可得结果;
(2)由角的加减可得∠AOM+∠DON的度数,从而求得∠BOM+∠CON,再利用∠BOC=∠MON-(∠BOM+∠CON)可得结果;
(3)由OM与ON分别为角平分线,利用角平分线的定义得到两对角相等,根据∠BOC=∠MON-∠BOM-∠CON,等量代换即可表示出∠BOC的大小.
解:(1)∵OM平分∠AOB,ON平分∠COD
∴∠AOB=2∠MOB=30°,∠COD=2∠NOD=20°
∴∠AOD=∠AOB+∠BOC+∠COD=30°+25°+20°=75°
(2)∵∠AOD=75°,∠MON=55°,
∴∠AOM+∠DON=∠AOD-∠MON=20°,
∵∠BOM+∠CON=∠AOM+∠DON=20°,
∴∠BOC=∠MON-(∠BOM+∠CON)=55°-20°=35°,
(3)∵OM平分∠AOB,ON平分∠COD,
∴∠AOM=∠BOM=
∠AOB,∠CON=∠DON=
∠COD,
∵∠BOC=∠MON-∠BOM-∠CON
=∠MON-
∠AOB-
∠COD=∠MON-
(∠AOB+∠COD)
=∠MON-
(∠AOD-∠BOC)
=β-
(α-∠BOC)
=β-
α+
∠BOC,
∴∠BOC=2β-α.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某公司员工分别在A、B、C三个住宅区,A区有30人,B区有15人,C区有10人,三个区在一条直线上,位置如图所示,该公司的接送车打算在此间只设一个停靠点,为使所有员工步行到停靠点的路程之和最小,那么停靠点的位置应设在( )

A.A区B.B区C.C区D.A.B两区之间
-
科目: 来源: 题型:
查看答案和解析>>【题目】“中华人民共和国道路交通管理条例”规定:小汽车在城市街道上行驶速度不得超过70 km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方30 m处,过了2 s后,测得小汽车与车速检测仪间距离为50 m,这辆小汽车超速了吗?

-
科目: 来源: 题型:
查看答案和解析>>【题目】为了了解龙岗区学生喜欢球类活动的情况,采取抽样调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果绘制成如图所示的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),请你根据图中提供的信息解答下列问题:

(1)本次共调查的学生人数为___,并把条形统计图补充完整;
(2)扇形统计图中m=___,n=___;
(3)表示“足球”的扇形的圆心角是___度;
(4)若龙岗区初中学生共有60000人,则喜欢乒乓球的有多少人.
-
科目: 来源: 题型:
查看答案和解析>>【题目】己知多项式3m3n2
2mn3
2中,四次项的系数为a,多项式的次数为b,常数项为c,且4b、
10c3、
(a+b)2bc的值分别是点A、B、C在数轴上对应的数,点P从原点O出发,沿OC方向以1单位/s的速度匀速运动,点Q从点C出发在线段CO上向点O匀速运动(点P、Q分别运动到点C、O时停止运动),两点同时出发.(1)分别求4b、
10c3、
(a+b)2bc的值;(2)若点Q运动速度为3单位/s,经过多长时间P、Q两点相距70;
(3)当点P运动到线段AB上时,分别取OP和AB的中点E、F,试问
的值是否变化,若变化,求出其范围:若不变,求出其值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示的是A,B,C,D三点,按如下步骤作图:①先分别以A,B两点为圆心,以大于
AB的长为半径作弧,两弧相交于M、N两点,作直线MN;②再分别以B,C两点为圆心,以大于
的长为半径作弧,两弧相交于G,H两点,作直线GH,GH与MN交于点P,若∠BAC=66°,则∠BPC等于( )
A.100°
B.120°
C.132°
D.140° -
科目: 来源: 题型:
查看答案和解析>>【题目】问题情境:在综合与实践课上,同学们以“已知三角形三边的长度,求三角形面积”为主题开展数学活动,小颖想到借助正方形网格解决问题.图1,图2都是8×8的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点.

操作发现:小颖在图1中画出△ABC,其顶点A,B,C都是格点,同时构造正方形BDEF,使它的顶点都在格点上,且它的边DE,EF分别经过点C,A,她借助此图求出了△ABC的面积.
(1)在图1中,小颖所画的△ABC的三边长分别是AB=__________,BC=__________,AC=__________;△ABC的面积为__________.
解决问题:(2)已知△ABC中,AB=
,BC=2
,AC=5
,请你根据小颖的思路,在图2的正方形网格中画出△ABC,并计算△ABC的面积.
相关试题