【题目】如图,在边长为 1 的正方形组成的网格中,△ ABC的顶点均在格点上,A(3,2), B(4, 3), C(1, 1)
![]()
(1)画出△ABC关于y轴对称的图形△ A′B′C′
(2)写出A′、B′、C′的坐标(直接写出答案) A′ ;B′ ;C′ ;
(3)写出△ A′B′C′的面积为 .(直接写出答案)
参考答案:
【答案】(1)见解析;(2)(3,2),(4,-3),(1,-1),(3)![]()
【解析】
(1)根据关于y轴对称的点的坐标特点即可得知A′,B′,C′的坐标,描出这些点依次连接即可得出△ A′B′C′;
(2)根据(1)所画图形即可得各点坐标;
(3)用割补法即可求出△ A′B′C′的面积.
(1)因为A(3,2), B(4, 3), C(1, 1) ,关于y轴对称,所以A′(3,2),B′(4,-3),C′(1,-1),依次描出三点,连接即可,见下图:
![]()
(2)根据(1)作图过程可知A′(3,2),B′(4,-3),C′(1,-1)
(3)
,过程如下:
![]()
![]()
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC 是边长为 4 的等边三角形,点 D 是 AB 上异 于 A,B 的一动点,将△ACD 绕点 C 逆时针旋转 60°得△BCE, 则旋转过程中△BDE 周长的最小值_________.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(-3,2),B(0,4),C(0,2).

(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△
C;平移△ABC,若A的对应点
的坐标为(0,4),画出平移后对应的△
;(2)若将△
C绕某一点旋转可以得到△
,请直接写出旋转中心的坐标;(3)在
轴上有一点P,使得PA+PB的值最小,请直接写出点P的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】某文具店某几种型号的计算器每只进价 12 元、售价 20 元,多买优惠, 优惠方法是:凡是一次买 10 只以上的,每多买一只,所买的全部计算器每只就 降价 0.1 元,例如:某人买 18 只计算器,于是每只降价 0.1×(18-10)=0.8(元), 因此所买的 18 只计算器都按每只 19.2 元的价格购买,但是每只计算器的最低售 价为 16 元.
(1)求一次至少购买多少只计算器,才能以最低售价购买? (2)写出该文具店一次销售 x(x>10)只时,所获利润 y(元)与 x(只)之间的函数关系 式,并写出自变量 x 的取值范围;
(3)一天,甲顾客购买了 46 只,乙顾客购买了 50 只,店主发现卖 46 只赚的钱反 而比卖 50 只赚的钱多,请你说明发生这一现象的原因;当 10<x≤50 时,为了 获得最大利润,店家一次应卖多少只?这时的售价是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,线段AB和射线BM交于点B.
(1)利用尺规完成以下作图,并保留作图痕迹(不写作法)
①在射线BM上作一点C,使AC=AB;
②作∠ABM 的角平分线交AC于D点;
③在射线CM上作一点E,使CE=CD,连接DE.

(2)在(1)所作的图形中,猜想线段BD与DE的数量关系,并证明之.
-
科目: 来源: 题型:
查看答案和解析>>【题目】两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B. C.E在同一条直线上,连结DC.

(1)请在图2中找出与△ABE全等的三角形,并给予证明;
(2)证明:DC⊥BE.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ ABC中,AB = AC

(1)如图 1,如果∠BAD = 30°,AD是BC上的高,AD =AE,则∠EDC =
(2)如图 2,如果∠BAD = 40°,AD是BC上的高,AD = AE,则∠EDC =
(3)思考:通过以上两题,你发现∠BAD与∠EDC之间有什么关系?请用式子表示:
(4)如图 3,如果AD不是BC上的高,AD = AE,是否仍有上述关系?如有,请你写出来,并说明理由
相关试题