【题目】两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B. C.E在同一条直线上,连结DC.
![]()
(1)请在图2中找出与△ABE全等的三角形,并给予证明;
(2)证明:DC⊥BE.
参考答案:
【答案】(1)△ACD≌△ABE,理由见解析;(2)见解析
【解析】
(1)由等腰直角三角形的性质易得AB=AC,AE=AD,∠BAC=∠EAD=90°,然后推出∠BAE=∠CAD,利用SAS判定△ABE≌△ACD;
(2)由全等三角形得∠ACD=∠ABE=45°,易得∠BCD=90°,所以DC⊥BE.
(1)图2中△ACD≌△ABE.
证明:∵△ABC与△AED均为等腰直角三角形,
∴AB=AC,AE=AD,∠BAC=∠EAD=90°,
∴∠BAC+∠CAE=∠EAD+∠CAE,
即∠BAE=∠CAD.
在△ABE与△ACD中,
![]()
∴△ABE≌△ACD(SAS);
(2)证明:由(1)△ABE≌△ACD,可得∠ACD=∠ABE=45°,
又∵∠ACB=45°,
∴∠BCD=∠ACB+∠ACD=90°,
∴DC⊥BE.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某文具店某几种型号的计算器每只进价 12 元、售价 20 元,多买优惠, 优惠方法是:凡是一次买 10 只以上的,每多买一只,所买的全部计算器每只就 降价 0.1 元,例如:某人买 18 只计算器,于是每只降价 0.1×(18-10)=0.8(元), 因此所买的 18 只计算器都按每只 19.2 元的价格购买,但是每只计算器的最低售 价为 16 元.
(1)求一次至少购买多少只计算器,才能以最低售价购买? (2)写出该文具店一次销售 x(x>10)只时,所获利润 y(元)与 x(只)之间的函数关系 式,并写出自变量 x 的取值范围;
(3)一天,甲顾客购买了 46 只,乙顾客购买了 50 只,店主发现卖 46 只赚的钱反 而比卖 50 只赚的钱多,请你说明发生这一现象的原因;当 10<x≤50 时,为了 获得最大利润,店家一次应卖多少只?这时的售价是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在边长为 1 的正方形组成的网格中,△ ABC的顶点均在格点上,A(3,2), B(4, 3), C(1, 1)

(1)画出△ABC关于y轴对称的图形△ A′B′C′
(2)写出A′、B′、C′的坐标(直接写出答案) A′ ;B′ ;C′ ;
(3)写出△ A′B′C′的面积为 .(直接写出答案)
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,线段AB和射线BM交于点B.
(1)利用尺规完成以下作图,并保留作图痕迹(不写作法)
①在射线BM上作一点C,使AC=AB;
②作∠ABM 的角平分线交AC于D点;
③在射线CM上作一点E,使CE=CD,连接DE.

(2)在(1)所作的图形中,猜想线段BD与DE的数量关系,并证明之.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ ABC中,AB = AC

(1)如图 1,如果∠BAD = 30°,AD是BC上的高,AD =AE,则∠EDC =
(2)如图 2,如果∠BAD = 40°,AD是BC上的高,AD = AE,则∠EDC =
(3)思考:通过以上两题,你发现∠BAD与∠EDC之间有什么关系?请用式子表示:
(4)如图 3,如果AD不是BC上的高,AD = AE,是否仍有上述关系?如有,请你写出来,并说明理由
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC 中,∠A=∠B=30°,E,F 在 AB 上,∠ECF=60°.
(1)画出△BCF 绕点 C 顺时针旋转 120°后的△ACK;
(2)在(1)中,若 AE2+ EF2= BF2,求证 BF=
CF.
-
科目: 来源: 题型:
查看答案和解析>>【题目】抛物线 y=x2+mx+n 过点(-1,8)和点(4,3)且与 x 轴交于 A,B 两点, 与 y 轴交于点 C
(1)求抛物线的解析式;
(2)如图1,AD 交抛物线于 D,交直线 BC 于点 G,且 AG=GD,求点 D 的坐标;
(3)如图2,过点 M(3,2)的直线交抛物线于 P,Q,AP 交 y 轴于点 E,AQ 交y 轴于点 F,求OE·OF的值.

相关试题