【题目】如图,商丘市睢阳区南湖中有一小岛,湖边有一条笔直的观光小道,现决定从小岛架一座与观光小道垂直的小桥PD,小坤在小道上测得如下数据:AB=200.0米,∠PAB=38.5°,∠PBA=26.5°.请帮助小坤求出小桥PD的长.(结果精确到0.1米) (参考数据:sin38.5°≈0.62,cos38.5°≈0.78,tan38.5°≈0.80,sin26.5°≈0.45,cos26.5°≈0.89,tan26.5°≈0.50)![]()
参考答案:
【答案】解:设PD=x米, ∵PD⊥AB,
∴∠ADP=∠BDP=90°,
在Rt△PAD中,tan∠PAD=
,
∴AD=
≈
=
x,
在Rt△PBD中,tan∠PBD=
,
∴DB=
≈
=2x,
又∵AB=80.0米,
∴
x+2x=200.0,
解得:x≈61.5,即PD≈61.5(米),
∴DB=123.0(米).
答:小桥PD的长度约为61.5米,位于AB之间距B点约123.0米.
【解析】设PD=x米,在Rt△PAD中表示出AD,在Rt△PDB中表示出BD,再由AB=200.0米,可得出方程,解出即可得出PD的长度,继而也可确定小桥在小道上的位置.
-
科目: 来源: 题型:
查看答案和解析>>【题目】根据条件画图,并回答问题:
(1)画一个锐角△ABC(三边均不相等);
(2)画出BC边上的中线AE和高AD;
(3)写出所有以AD为高的三角形。
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,⊙O半径为4cm,其内接正六边形ABCDEF,点P,Q同时分别从A,D两点出发,以1cm/s速度沿AF,DC向中点F,G运动.连接PB,QE,设运动时间为t(s).

(1)求证:四边形PEQB为平行四边形;
(2)填空: ①当t=s时,四边形PBQE为菱形;
②当t=s时,四边形PBQE为矩形. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AE、BO、CO分别平分∠BAC、∠ABC、∠ACB,OD⊥BC,试说明:∠1=∠2.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,线段AB、CD相交于点O,连结AD、CB,我们把这个图形称为“8字型”根据三角形内角和容易得到:∠A+∠D=∠C+∠B.


(1)用“8字型”
如图2,∠A+∠B+∠C+∠D+∠E+∠F=___________;
(2)造“8字型”
如图3,∠A+∠B+∠C+∠D+∠E+∠F+∠G=_____________;
(3)发现“8字型”
如图4,BE、CD相交于点A,CF为∠BCD的平分
线,EF为∠BED的平分线.
①图中共有________个“8字型”;
②若∠B:∠D:∠F=4:6:x,求x的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】重阳节期间,某单位组织本单位退休职工前去距离商丘480千米的信阳鸡公山登高旅游,由于人数较多,共租用甲、乙两辆长途汽车沿同一路线赶赴景点.图中的折线、线段分别表示甲、乙两车所走的路程y甲(千米),y乙(千米)与时间x(小时)之间的函数关系对应的图象.请根据图象所提供的信息,解决下列问题:

(1)由于汽车发生故障,甲车在途中停留了小时;
(2)甲车排除故障后,立即提速赶往景点.请问甲车在排除故障时,距出发点的路程是多少千米?
(3)为了保证及时联络,甲、乙车在第一次相遇时约定此后两车之间的路程不超过35千米,请通过计算说明,按图象所表示的走法是否符合约定. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知△ABC是等边三角形,点D、F分别在线段BC、AB上,∠EFB=60°,DC=EF.
(1)求证:四边形EFCD是平行四边形;
(2)若BF=EF,求证:AE=AD.

相关试题