【题目】如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=40°,∠APD=65°. ![]()
(1)求∠B的大小;
(2)已知圆心0到BD的距离为3,求AD的长.
参考答案:
【答案】
(1)解:∵∠CAB=∠CDB(同弧所对的圆周角相等),∠CAB=40°,
∴∠CDB=40°;
又∵∠APD=65°,
∴∠BPD=115°;
∴在△BPD中,
∴∠B=180°﹣∠CDB﹣∠BPD=25°
(2)解:过点O作OE⊥BD于点E,则OE=3.
∵AB是直径,
∴AD⊥BD(直径所对的圆周角是直角);
∴OE∥AD;
又∵O是AB的中点,
∴OE是△ABD的中位线,
∴AD=2OE=6.
![]()
【解析】(1)由同弧所对的圆周角相等求得∠CAB=∠CDB=40°,然后根据平角是180°求得∠BPD=115°;最后在△BPD中依据三角形内角和定理求∠B即可;(2)过点O作OE⊥BD于点E,则OE=3.根据直径所对的圆周角是直角,以及平行线的判定知OE∥AD;又由O是直径AB的半径可以判定O是AB的中点,由此可以判定OE是△ABD的中位线;最后根据三角形的中位线定理计算AD的长度.
【考点精析】关于本题考查的三角形的内角和外角和三角形中位线定理,需要了解三角形的三个内角中,只可能有一个内角是直角或钝角;直角三角形的两个锐角互余;三角形的一个外角等于和它不相邻的两个内角的和;三角形的一个外角大于任何一个和它不相邻的内角;连接三角形两边中点的线段叫做三角形的中位线;三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半才能得出正确答案.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC 中,AB=AC,CD是∠ACB的平分线,DE∥BC,交AC于点 E.
(1)求证:DE=CE.
(2)若∠CDE=35°,求∠A 的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,直线 y=x+2 与两坐标轴分别交于A、B 两点,点 C 是 OB 的中点,D、E 分 别是直线 AB、y 轴上的动点,则△CDE 周长的最小值是________.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,A(﹣2,2),B(﹣3,﹣2)

(1)若点C与点A关于原点O对称,则点C的坐标为 ;
(2)将点A向右平移5个单位得到点D,则点D的坐标为 ;
(3)由点A,B,C,D组成的四边形ABCD内(不包括边界)任取一个横、纵坐标均为整数的点,求所取的点横、纵坐标之和恰好为零的概率.
-
科目: 来源: 题型:
查看答案和解析>>【题目】二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象回答下列问题.

(1)写出方程ax2+bx+c=0的根;
(2)写出不等式ax2+bx+c<0的解集;
(3)若方程ax2+bx+c=k无实数根,写出k的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知抛物线y=﹣x2+bx+c与x轴交于点A(1,0),B(3,0),与y轴交于点C.

(1)求抛物线的解析式;
(2)设点P在该抛物线上滑动,则满足S△PAB=1的点P有几个?求出所有点P的坐标;
(3)在该抛物线的对称轴上存在点M,使得△MAC的周长最小,求出这个点M的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】课堂上学习了勾股定理后,知道“勾三、股四、弦五”.王老师给出一组数让学生观察:3、4、5;5、12、13;7、24、25;9、40、41;…,学生发现这些勾股 数的勾都是奇数,且从 3 起就没有间断过,于是王老师提出以下问题让学生解决.
(1)请你根据上述的规律写出下一组勾股数:11、________、________;
(2)若第一个数用字母a(a为奇数,且a≥3)表示,那么后两个数用含a的代数式分别怎么表示?小明发现每组第二个数有这样的规律4=
,12=
,24=
……,于是他很快表示了第二数为
,则用含a的代数式表示第三个数为________;(3)用所学知识证明你的结论.
相关试题