【题目】如图,在四边形ABCD中,AD=BC,∠A=∠B,E为AB的中点,连结CE,DE.
(1)求证:△ADE≌△BCE.
(2)若∠A=70°,∠BCE=60°,求∠CDE的度数.
![]()
参考答案:
【答案】(1)证明见解析;(2)50°.
【解析】
(1)由E为AB中点可得AE=BE,根据AD=BC,∠A=∠B,利用SAS即可证明△ADE≌△BCE;(2)由(1)得△ADE≌△BCE,可得DE=EC,∠ADE=∠BCE=60°,根据三角形内角和定理可得∠AED=∠BEC=50°,根据平角定义可得∠DEC的度数,根据等腰三角形的性质即可求出∠CDE的度数.
(1)∵E为AB的中点,
∴AE=BE,
又∵AD=BC,∠A=∠B,
∴△ADE≌△BCE;
(2)由(1)得△ADE≌△BCE,
∴DE=EC,∠ADE=∠BCE=60°,∠AED=∠BEC,
∵∠A=∠B=70°,
∴∠AED=∠BEC=180°-60°-70°=50°,
∴∠DEC=180°-50°-50°=80°,
∵DE=EC,
∴∠CDE=
(180°-80°)=50°
-
科目: 来源: 题型:
查看答案和解析>>【题目】七巧板是我们祖先的一项卓越创造,被西方人誉为“东方魔板”.下面的两幅图正方形(如图1)、“风车型”(如图2)都是由同一副七巧板拼成的,则图中正方形ABCD,EFGH的面积比为______.

-
科目: 来源: 题型:
查看答案和解析>>【题目】对非负实数x“四舍五入”到个位的值记为< x >,即已知n为正整数,如果n-
≤x<n+
,那么< x >=n.例如:< 0 >=< 0.48 >=0,< 0.64 >=< 1.493 >=1,< 2 >=2,< 3.5 >=< 4.12 >=4,…则满足方程< x >=
的非负实数x的值为____. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,矩形ABCD中,点E,F分别在边AD,CD上,且EF⊥BE,EF=BE,△DEF的外接圆⊙O恰好切BC于点G,BF交⊙O于点H,连结DH.若AB=8,则DH=_____.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某公司销售部有营业员16人,销售部为了制定某种商品的月销售定额,统计了这16人某月的销售量如下:
每人销售件数
10
11
12
13
14
15
人数
1
3
4
3
3
2
(1)这16位销售员该月销售量的众数是_____,中位数是_____,平均数是_____.
(2)若要使75%的营业员都能完成任务,应选什么统计量(平均数、中位数和众数)作为月销售件数的定额?请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC内接于⊙O,AB=AC,CF垂直直径BD于点E,交边AB于点F.
(1)求证:∠BFC=∠ABC.
(2)若⊙O的半径为5,CF=6,求AF长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某茶叶销售商计划将m罐茶叶按甲、乙两种礼品盒包装出售,其中甲种礼品盒每盒装4罐,每盒售价240元;乙种礼品盒每盒装6罐,每盒售价300元,恰好全部装完.已知每罐茶叶的成本价为30元,设甲种礼品盒的数量为x盒,乙种礼品盒的数量为y盒.
(1)当m=120时.
①求y关于x的函数关系式.
②若120罐茶叶全部售出后的总利润不低于3000元,则甲种礼品盒的数量至少要多少盒?
(2)若m罐茶叶全部售出后平均每罐的利润恰好为24元,且甲、乙两种礼品盒的数量和不超过69盒,求m的最大值.
相关试题