【题目】如图,△ABC 中,AB=BC,∠ABC=90°,F 为 AB 延长线上一点,点 E 在BC 上,且 AE=CF.
![]()
(1)求证: AE⊥CF;
(2)若∠CAE=25°,求∠ACF 的度数.
参考答案:
【答案】(1)见解析;(2)65°.
【解析】
(1)运用HL定理直接证明△ABE≌△CBF,即可解决问题.
(2)证明∠BAE=∠BCF=25°;求出∠ACB=45°,即可解决问题.
如图,延长AE交CF于点H,![]()
在Rt△ABE与Rt△CBF中,
∴△ABE≌△CBF(HL)
∴∠BAE=∠BCF,
∵∠F+∠BCF=90°,
∴∠BAE+∠F=90°,
∴∠AHF=90°,
∴AE⊥CF
(2)∵AB=BC,∠ABC=90°,
∴∠ACB=45°=∠BAC,且∠CAE=25°,
∴∠BAE=20°,
∵△ABE≌△CBF,
∴∠BAE=∠BCF=20°,
∴∠ACF=65°.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠ABC=70°,∠C=30°,求∠DAE和∠AOB.

-
科目: 来源: 题型:
查看答案和解析>>【题目】△ABC 中,AB=AC=12 厘米,∠B=∠C,BC=8 厘米,点 D 为 AB 的中点.如果点 P 在线段 BC 上以 2 厘米/秒 的速度由 B 点向 C 点运动,同时,点 Q 在线段 CA 上由 C 点向 A 点运动.若点 Q 的运动速度为 v 厘米/秒,则当△BPD 与△CQP 全等时,v 的值为( )

A.2B.5C.1 或 5D.2 或 3
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠C=90°,AC=3,tanA=
.点D,E分别是边BC,AC上的点,且∠EDC=∠A.将△ABC沿DE所在直线对折,若点C恰好落在边AB上,则DE的长为___.
-
科目: 来源: 题型:
查看答案和解析>>【题目】仔细阅读下面例题,解答问题:例题: 已知二次三项式x2 4x m 有一个因式是 ( x 3) ,求另一个因式以及 m 的值.
解:设另一个因式为 ( x n) ,得x2 4x m ( x 3) ( x n)
则x2 4 x m x2 (n 3) x 3n
∴

解得: n 7, m 21
∴ 另一个因式为 ( x 7) , m 的值为-21 .
问题:仿照以上方法解答下面问题:
(1)已知二次三项式2x2+3x-k有一个因式是(2x-5),求另一个因式以及k的值.
(2)已知二次三项式6x2+4ax+2有一个因式是(2x+a),a是正整数,求另一个因式以及a的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】解下列各题:
(1)先化简,再求代数式(
的值,其中x=
cos30°+
;(2)已知α是锐角,且sin(α+15°)=
.计算
-4cosα-(π-3.14)0+tanα+(
)-1的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知等腰△ABC中,∠BAC=30°,AB=AC,∠PAB=α,点B关于直线AP的对称点为点D,连接AD,连接BD交AP于点G,连接CD交AP于点E,交AB于点F.
(1)如图当α=15°时,①按要求画出图形,②求出∠ACD的度数,③探究DE与BF的倍数关系并加以证明;
(2)在直线AP绕点A顺时针旋转的过程中(0°<α<75°),当△AEF为等腰三角形时,画出相应图形直接求出α的值为________.
相关试题