【题目】随着人们环保意识的不断增强,我市家庭电动自行车的拥有量逐年增加.据统计,某小区2014年底拥有家庭电动自行车125辆,2016年底家庭电动自行车的拥有量达到180辆.
(1)若该小区2014年底到2017年底家庭电动自行车拥有量的年平均增长率相同,则该小区到2017年底电动自行车将达到多少辆?
(2)为了缓解停车矛盾,该小区决定投资3万元再建若干个停车位,据测算,建造费用分别为室内车位1000元/个,露天车位200元/个.考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的2.5倍,则该小区最多可建两种车位各多少个?试写出所有可能的方案.
参考答案:
【答案】(1) 216辆;(2)见解析.
【解析】
(1)设年平均增长率是x,根据某小区2014年底拥有家庭电动自行车125辆,2016年底家庭电动自行车的拥有量达到180辆,可求出增长率,进而可求出到2017年底家庭电动车将达到多少辆.
(2)设建x个室内车位,根据投资钱数可表示出露天车位,根据计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的2.5倍,可列出不等式组求解,进而可求出方案情况.
解:(1)设家庭电动自行车拥有量的年平均增长率为x,
则125(1+x)2=180,
解得x1=0.2=20%,x2=﹣2.2(不合题意,舍去)
∴180(1+20%)=216(辆),
答:该小区到2017年底家庭电动自行车将达到216辆;
(2)设该小区可建室内车位a个,露天车位b个,
则
,
由①得b=150﹣5a,
代入②得20≤a≤
,
∵a是正整数,
∴a=20或21,
当a=20时b=50,当a=21时b=45.
∴方案一:建室内车位20个,露天车位50个;
方案二:室内车位21个,露天车位45个
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在长方形ABCD中,点E,F分别是BC,DC上的动点.沿EF 折叠△CEF,使点C的对称点G落在AD上,若AB=3,BC=5,求CF的取值范围.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC 中,AB=AC,MN垂直平分AB分别交AB、BC于M、M,如果△ACN是等腰三角形,那么∠B的大小是______________________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB=AC,以AB为直径的圆交AC于点D,交BC于点E,延长AE至点F,使EF=AE,连接FB,FC.
(1)求证:四边形ABFC是菱形;
(2)若AD=7,BE=2,求半圆和菱形ABFC的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】将一把三角尺放在边长为2的正方形ABCD上(正方形四个内角为90°,四边都相等),并使它的直角顶点P在对角线AC上滑动,直角的一边始终经过点B,另一边与射线DC交于点Q。
探究:(1)当点Q在边CD 上时,线段PQ 与线段PB之间有怎样的大小关系?试证明你观察得到结论;
(2)当点Q在边CD 上时,如果四边形 PBCQ 的面积为1,求AP长度;
(3)当点P在线段AC 上滑动时,△PCQ 是否可能成为等腰三角形?如果可能,指出所有能使△PCQ 成为等腰三角形的点Q的位置,并求出相应的AP的长;如果不可能,试说明理由。

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABD≌△CDB,且AB,CD是对应边.下面四个结论中不正确的是( )

A. △ABD和△CDB的面积相等B. △ABD和△CDB的周长相等
C. ∠A+∠ABD=∠C+∠CBDD. AD∥BC,且AD=BC
-
科目: 来源: 题型:
查看答案和解析>>【题目】二次函数 y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线 x=1,下列结论:①ab<0;②b2>4ac;③a+b+2c<0;④3a+c<0其中正确的是( ).

A. ①②③④ B. ①②④ C. ①③④ D. ①②③
相关试题