【题目】如图,在长方形ABCD中,点E,F分别是BC,DC上的动点.沿EF 折叠△CEF,使点C的对称点G落在AD上,若AB=3,BC=5,求CF的取值范围.
![]()
参考答案:
【答案】
≤CF≤3
【解析】
当点E与B重合时,CF最小,先利用勾股定理求出AG,设CF=FG=
,在Rt△ABG中,利用勾股定理列出方程即可解决问题,当F与D重合时,CF最大,由此即可解决问题.
∵四边形ABCD是长方形,∴∠C=90°,BC=AD=5,CD=AB=3,
当点D与F重合时,CF最大=3,如图1所示:
当B与E重合时,CF最小,如图2所示:
在Rt△ABG中,∵BG=BC=5,AB=3,
∴AG=
=4,
∴DG=AD﹣AG=1,
设CF=FG=
,
在Rt△DFG中,∵DF2+DG2=FG2,
∴
,∴x=
.
∴CF的取值范围为
≤CF≤3
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,BA=BC,D在边CB上,且DB=DA=AC
(1)填空:如图1,∠B= °,∠C= °;
(2)如图2,若M为线段BC上的点,过M作MH⊥AD,交AD的延长线于点H,分别交直线AB、AC与点N、E.
①求证:△ANE是等腰三角形;
②线段BN、CE、CD之间的数量关系是 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知关于x的一元二次方程x2+2x+m﹣2=0有两个实数根,m为正整数,且该方程的根都是整数,则符合条件的所有正整数m的和为( )
A. 6 B. 5 C. 4 D. 3
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知关于x的方程x2+ax+a-2=0.
(1)求证:不论a取何实数,该方程都有两个不相等的实数根;
(2)若该方程的一个根为1,求a的值及该方程的另一根.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC 中,AB=AC,MN垂直平分AB分别交AB、BC于M、M,如果△ACN是等腰三角形,那么∠B的大小是______________________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB=AC,以AB为直径的圆交AC于点D,交BC于点E,延长AE至点F,使EF=AE,连接FB,FC.
(1)求证:四边形ABFC是菱形;
(2)若AD=7,BE=2,求半圆和菱形ABFC的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】随着人们环保意识的不断增强,我市家庭电动自行车的拥有量逐年增加.据统计,某小区2014年底拥有家庭电动自行车125辆,2016年底家庭电动自行车的拥有量达到180辆.
(1)若该小区2014年底到2017年底家庭电动自行车拥有量的年平均增长率相同,则该小区到2017年底电动自行车将达到多少辆?
(2)为了缓解停车矛盾,该小区决定投资3万元再建若干个停车位,据测算,建造费用分别为室内车位1000元/个,露天车位200元/个.考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的2.5倍,则该小区最多可建两种车位各多少个?试写出所有可能的方案.
相关试题