【题目】在△ABC中,∠ACB=2∠B,如图①,当∠C=90°,AD为∠BAC的角平分线时,在AB上截取AE=AC,连接DE,易证AB=AC+CD。
![]()
(1)如图②,当∠C≠90°,AD为∠BAC的角平分线时,线段AB、AC、CD又有怎样的数量关系?请写出你的猜想并证明;
(2)如图③,当AD为△ABC的外角平分线时,线段AB、AC、CD又有怎样的数量关系?请写出你的猜想,并对你的猜想给予证明。
参考答案:
【答案】证明见解析.
【解析】
试题分析:(1)首先在AB上截取AE=AC,连接DE,易证△ADE≌△ADC(SAS),则可得∠AED=∠C,ED=CD,又由∠AED=∠ACB,∠ACB=2∠B,所以∠AED=2∠B,即∠B=∠BDE,易证DE=CD,则可求得AB=AC+CD;
(2)首先在BA的延长线上截取AE=AC,连接ED,易证△EAD≌△CAD,可得ED=CD,∠AED=∠ACD,又由∠ACB=2∠B,易证DE=EB,则可求得AC+AB=CD.
试题解析:(1)猜想:AB=AC+CD.
证明:如图②,在AB上截取AE=AC,连接DE,∵AD为∠BAC的角平分线时,∴∠BAD=∠CAD,
∵AD=AD,∴△ADE≌△ADC(SAS),∴∠AED=∠C,ED=CD,∵∠ACB=2∠B,∴∠AED=2∠B,
∵∠AED=∠B+∠EDB,∴∠B=∠EDB,∴EB=ED,∴EB=CD,∴AB=AE+DE=AC+CD.
(2)猜想:AB+AC=CD.
证明:在BA的延长线上截取AE=AC,连接ED.∵AD平分∠FAC,∴∠EAD=∠CAD.
在△EAD与△CAD中,AE=AC,∠EAD=∠CAD,AD=AD,∴△EAD≌△CAD(SAS).
∴ED=CD,∠AED=∠ACD.∴∠FED=∠ACB,又∵∠ACB=2∠B,∴∠FED=2∠B,∠FED=∠B+∠EDB,
∴∠EDB=∠B,∴EB=ED.∴EA+AB=EB=ED=CD.∴AC+AB=CD.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某射击队要从甲,乙,丙,丁四名队员中选出一名队员代表射击队参加射击比赛,各队员的平时成绩的平均数及方差如表所示:
甲
乙
丙
丁
平均数(环)
9.8
9.3
9.6
9.8
方差(环2)
3.3
3.3
3.5
6.1
根据表中数据,要从这四个队员中选择一个成绩好且发挥稳定的队员去参赛,那么应该选的队员是( )
A. 甲B. 乙C. 丙D. 丁
-
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙两同学的家与学校的距离均为3000米.甲同学先步行600米,然后乘公交车去学校、乙同学骑自行车去学校.已知甲步行速度是乙骑自行车速度的
,公交车的速度是乙骑自行车速度的2倍.甲乙两同学同时从家发去学校,结果甲同学比乙同学早到2分钟.(1)求乙骑自行车的速度;
(2)当甲到达学校时,乙同学离学校还有多远?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,正方形ABCD的边长为4,将长为4的线段QR的 两 端放在正方形的相邻的两边上同时滑动.如果点Q从点A出发,沿图中所示方向按A→B→C→D→A滑动到A止,同时点R从点B出发,沿图中所示方向按B→C→D→A→B滑动到B止,在这个过程中,线段QR的中点M所经过的路线围成的图形的面积为_____________.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在边长为3的正方形ABCD中,点E是BC边上的点,BE=1,∠AEP=90°,且EP交正方形外角的平分线CP于点P,交边CD于点F,

(1)
的值为 ;(2)求证:AE=EP;
(3)在AB边上是否存在点M,使得四边形DMEP是平行四边形?若存在,请给予证明;若不存在,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)正方形网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形叫做格点三角形,在图1正方形网格(每个小正方形边长为1)中画出格点△ABC,使AB=AC=5,BC=

(2)在△ABC中, AB、BC、AC三边的长分别为
、
、
,求这个三角形的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图2所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.这种方法叫做构图法.①△ABC的面积为: .
②若△DEF三边的长分别为
、
、
,请在图3的正方形网格中画出相应的△DEF,并利用构图法求出它的面积为_____________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】国家主管部门规定:从2008年6月1日起,各商家禁止向消费者免费提供一次性塑料购物袋.为了了解巴中市市民对此规定的看法,对本市年龄在16—65岁之间的居民,进行了400个随机访问抽样调查,并根据每个年龄段的抽查人数和该年龄段对此规定的支持人数绘制了下面的统计图.

根据上图提供的信息回答下列问题:
(1)被调查的居民中,人数最多的年龄段是 岁.
(2)已知被调查的400人中有83%的人对此规定表示支持,请你求出31—40岁年龄段的满意人数,并补全图b.
(3)比较21—30岁和41—50岁这两个年龄段对此规定的支持率的高低(四舍五入到1%,注:某年龄段的支持率

相关试题