【题目】如图,Rt△ABC中,∠C=90°,AB=5,AC=3,D点从BC的中点到C点运动,点E在AD上,以E为圆心的⊙E分别与AB、BC相切,则⊙E的半径R的取值范围为( )![]()
A.
≤R≤![]()
B.
≤R≤![]()
C.
≤R≤2
D.1≤R≤![]()
参考答案:
【答案】B
【解析】解:当点E在AD上,AD为△ABC的中线,如图1,作EH⊥BC于H,EF⊥AB于F,
∵以E为圆心的⊙E分别与AB、BC相切,
∴EH=EF=R,
在Rt△ABC中,∵∠C=90°,AB=5,AC=3,
∴BC=
=4,
∵点D为BC的中点,
∴BD=CD=2,
在Rt△ADC中,AD=
=
,
∵EH∥AC,
∴△DEH∽△DAC,
∴
=
=
, 即
=
=
,
∴DE=
R,DH=
R,
∴AE=AD﹣DE=
﹣
R,BH=BD+DH=2+
R,
∵以E为圆心的⊙E分别与AB、BC相切,
∴BF=BH=2+
R
∴AF=AB﹣BF=3﹣
R,
在Rt△AEF中,∵EF2+AF2=AE2 ,
∴R2+(3﹣
R)2=(
﹣
R)2 , 解得R=
;
当点D运动到点C的位置,如图2,作EF⊥AB于F,
∵以E为圆心的⊙E分别与AB、BC相切,
∴EC=EF=R,
∴AE=AC﹣EC=3﹣R,
∵∠FAE=∠CAB,
∴Rt△AFE∽Rt△ACB,
∴
=
, 即
=
, 解得R=
,
∴当D点从BC的中点到C点运动,点E在AD上,以E为圆心的⊙E分别与AB、BC相切,则⊙E的半径R的取值范围为
≤R≤
.
故选B.![]()
![]()
【考点精析】掌握切线的性质定理是解答本题的根本,需要知道切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)如图,在△ABC中,∠B=40°,∠C=80°,AD⊥BC于D,且AE平分∠BAC,求∠EAD的度数.
(2)上题中若∠B=40°,∠C=80°改为∠C>∠B,其他条件不变,请你求出∠EAD与∠B、∠C之间的数列关系?并说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图(1),△ABC是一个三角形的纸片,点D、E分别是△ABC边上的两点,
研究(1):如果沿直线DE折叠,则∠BDA′与∠A的关系是 .
研究(2):如果折成图2的形状,猜想∠BDA′、∠CEA′和∠A的关系,并说明理由.
研究(3):如果折成图3的形状,猜想∠BDA′、∠CEA′和∠A的关系,并说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠A=90°,AB=AC=2,点O是边BC的中点,半圆O与△ABC相切于点D、E,则阴影部分的面积等于( )

A.1﹣
B.
C.1﹣
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置于水平桌面上,如图1.将骰子向右翻滚90°,然后在桌面上按逆时针方向旋转90°,则完成一次变换.如图2.若骰子的初始位置为图1所示的状态,那么按上述规则连续完成2次变换后,骰子朝上一面的点数是________;连续完成2019次变换后,骰子朝上一面的点数是________.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知直线AB上 一点O,以O为端点画射线OC,作∠AOC的角平分线OD,作∠BOC的角平分线OE;

(1)按要求完成画图;
(2)通过观察、测量你发现∠DOE= °;
(3)补全以下证明过程:
证明:∵OD平分∠AOC(已知)
∴∠DOC= ∠AOC( )
∵OE平分∠BOC(已知)
∴∠EOC= ∠BOC( )
∵∠AOC+∠BOC= °
∴∠DOE=∠DOC+∠EOC= (∠AOC+∠BOC)= °.
-
科目: 来源: 题型:
查看答案和解析>>【题目】暑假里某班同学相约一起去某公园划船,在售票处了解到该公园划船项目收费标准如下:
船型
两人船(仅限两人)
四人船(仅限四人)
六人船(仅限六人)
八人船(仅限八人)
每船租金(元/小时)

100
130

(1)其中,两人船项目和八人船项目单价模糊不清,通过询问,了解到以下信息:
①一只八人船每小时的租金比一只两人船每小时的租金的2倍少30元;
②租2只两人船,3只八人船,游玩一个小时,共需花费630元.
请根据以上信息,求出两人船项目和八人船项目每小时的租金;
(2)若该班本次共有18名同学一起来游玩,每人乘船的时间均为 1小时,且每只船均坐满,试列举出可行的方案(至少四种),通过观察和比较,找到所有方案中最省钱的方案.
相关试题