【题目】如图,抛物线y=x2+bx+c与直线y=
x﹣3交于A、B两点,其中点A在y轴上,点B坐标为(﹣4,﹣5),点P为y轴左侧的抛物线上一动点,过点P作PC⊥x轴于点C,交AB于点D.![]()
(1)求抛物线的解析式;
(2)以O,A,P,D为顶点的平行四边形是否存在?如存在,求点P的坐标;若不存在,说明理由.
(3)当点P运动到直线AB下方某一处时,过点P作PM⊥AB,垂足为M,连接PA使△PAM为等腰直角三角形,请直接写出此时点P的坐标.
参考答案:
【答案】
(1)
解:∵直线y=
x﹣3交于A、B两点,其中点A在y轴上,
∴A(0,﹣3),
∵B(﹣4,﹣5),
∴
,
∴
,
∴抛物线解析式为y=x2+
x﹣3,
(2)
解:存在,
设P(m,m2+
m﹣3),(m<0),
∴D(m,
m﹣3),
∴PD=|m2+4m|
∵PD∥AO,
∴当PD=OA=3,故存在以O,A,P,D为顶点的平行四边形,
∴|m2+4m|=3,
①当m2+4m=3时,
∴m1=﹣2﹣
,m2=﹣2+
(舍),
∴m2+
m﹣3=﹣1﹣
,
∴P(﹣2﹣
,﹣1﹣
),
②当m2+4m=﹣3时,
∴m1=﹣1,m2=﹣3,
(i)m1=﹣1,
∴m2+
m﹣3=﹣
,
∴P(﹣1,﹣
),
(ii)m2=﹣3,
∴m2+
m﹣3=﹣
,
∴P(﹣3,﹣
),
∴点P的坐标为(﹣2﹣
,﹣1﹣
),(﹣1,﹣
),(﹣3,﹣
).
(3)
解:方法一,如图,
![]()
∵△PAM为等腰直角三角形,
∴∠BAP=45°,
∵直线AP可以看做是直线AB绕点A逆时针旋转45°所得,
设直线AP解析式为y=kx﹣3,
∵直线AB解析式为y=
x﹣3,
∴k=
=3,
∴直线AP解析式为y=3x﹣3,
联立
,
∴x1=0(舍)x2=﹣ ![]()
当x=﹣
时,y=﹣
,
∴P(﹣
,﹣
).
方法二:如图,
![]()
∵直线AB解析式为y=
x﹣3,
∴直线AB与x轴的交点坐标为E(6,0),
过点A作AF⊥AB交x轴于点F,
∵A(0,﹣3),
∴直线AF解析式为y=﹣2x﹣3,
∴直线AF与x轴的交点为F(﹣
,0),
∴AE=3
,AF=
,
过点A作∠EAF的角平分线交x轴于点G,与抛物线相较于点P,过点P作PM⊥AB,
∴∠EAG=45°,
∴∠BAP=45°,
即:△PAM为等腰直角三角形.
设点G(m,0),
∴EG=6﹣m.FG=m+
,
根据角平分线定理得,
,
∴
,
∴m=1,
∴G(1,0),
∴直线AG解析式为y=3x﹣3①,
∵抛物线解析式为y=x2+
x﹣3②,
联立①②得,x=0(舍)或x=﹣
,
∴y=﹣
,
∴P(﹣
,﹣
).
【解析】(1)先确定出点A坐标,然后用待定系数法求抛物线解析式;(2)先确定出PD=|m2+4m|,当PD=OA=3,故存在以O,A,P,D为顶点的平行四边形,得到|m2+4m|=3,分两种情况进行讨论计算即可;(3)由△PAM为等腰直角三角形,得到∠BAP=45°,从而求出直线AP的解析式,最后求出直线AP和抛物线的交点坐标即可.
-
科目: 来源: 题型:
查看答案和解析>>【题目】杨梅是漳州的特色时令水果,杨梅一上市,水果店的老板用1200元购进一批杨梅,很快售完;老板又用2500元购进第二批杨梅,所购件数是第一批的2倍,但进价比第一批每件多了5元.
(1)第一批杨梅每件进价多少元?
(2)老板以每件150元的价格销售第二批杨梅,售出80%后,为了尽快售完,决定打折促销,要使第二批杨梅的销售利润不少于320元,剩余的杨梅每件售价至少打几折?(利润=售价﹣进价) -
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在菱形ABCD中,对角线AC与BD相交于点O,AB=13,BD=24,在菱形ABCD的外部以AB为边作等边三角形 ABE.点F是对角线BD上一动点(点F不与点B重合),将线段AF绕点A顺时针方向旋转60°得到线段AM,连接FM.

(1)求AO的长;
(2)如图2,当点F在线段BO上,且点M,F,C三点在同一条直线上时,求证:AC=
AM;
(3)连接EM,若△AEM的面积为40,请直接写出△AFM的周长.
温馨提示:考生可以根据题意,在备用图中补充图形,以便作答 -
科目: 来源: 题型:
查看答案和解析>>【题目】在△OAB中,OA=OB,OA⊥OB.在△OCD中,OC=OD,OC⊥OD.
(1)如图1,若A,O,D三点在同一条直线上,求证:S△AOC=S△BOD;
(2)如图2,若A,O,D三点不在同一条直线上,△OAB和△OCD不重叠.则S△AOC=S△BOD是否仍成立?若成立,请予以证明;若不成立,也请说明理由.
(3)若A,O,D三点不在同一条直线上,△OAB和△OCD有部分重叠,经过画图猜想,请直接写出 S△AOC和S△BOD的大小关系.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB=AC.
(1)请按如下步骤用直尺和圆规作图(保留作图痕迹并在图中标注字母):
①作∠ABC的平分线交AC边于点D;
②在BC的延长线上截取CE=CD;
③连接DE.
(2)求证:BD=DE.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,边长为2的等边△ABC和边长为1的等边△A′B′C′,它们的边B′C′,BC位于同一条直线l上,开始时,点C′与B重合,△ABC固定不动,然后把△A′B′C′自左向右沿直线l平移,移出△ABC外(点B′与C重合)停止,设△A′B′C′平移的距离为x,两个三角形重合部分的面积为y,则y关于x的函数图象是( )

A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,在ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为 .

相关试题