【题目】如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC 的三个顶点的坐标分别 A(-3,4)B(-5,2)C(-2,1)
(1)画出 △ABC关于y 轴的对称图形 △A1B1C1;
(2)画出将△ABC 绕原点 O逆时针方向旋转90°得到的△A2B2C2 ;
(3)求(2)中线段 OA扫过的图形面积.
![]()
参考答案:
【答案】(1)(2)见解析;(3)
.
【解析】试题分析:
(1)根据关于y轴对称的两个点,纵坐标相等,横坐标互为相反数即可点A1,B1,C1的坐标,根据坐标描出这三个点,再顺次连接即可;
(2)连接AO,以AO为起始边,O为顶点,逆时针旋转90°,在终边上截取A2O=AO,A2即为A的旋转对应点;同理可得B2,C2,再顺次连接A2,B2,C2即可;
(3)(2)中线段 O A 扫过的图形面积即为扇形AOA2的面积,所以由题易得半径r=5,圆心角为旋转角90°,利用扇形面积公式即可计算出结果.
试题解析:
(1)由题意画图如下,图中△A1B1C1为所求三角形;
![]()
(2)由题意画图如下,图中△A2B2C2为所求三角形;
![]()
(3)如上图,线段OA扫过的图形是扇形AOA2,
∵OA=
,∠A2OA=90°,
∴S扇形A2OA=
.
即线段OA旋转过程中扫过的面积为
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】射击队为从甲、乙两名运动员中选拔一人参加比赛,对他们进行了六次测试,测试成绩如下表(单位:环):
第一次
第二次
第三次
第四次
第五次
第六次
平均成绩
中位数
甲
10
8
9
8
10
9
9
①
乙
10
7
10
10
9
8
②
9.5
(1)完成表中填空① ;② ;
(2)请计算甲六次测试成绩的方差;
(3)若乙六次测试成绩方差为
,你认为推荐谁参加比赛更合适,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=-1,有以下结论:①abc>0;②4ac<b2;③2a+b=0;④a-b+c>0.其中正确的结论的个数是( )

A. 1 B. 2 C. 3 D. 4
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在⊙O中,AB是⊙O的直径,AB=10,
,点E是点D关于AB的对称点,M是AB上的一动点,下列结论:①∠BOE=60°;②∠CED=
∠DOB;③DM⊥CE;④CM+DM的最小值是10,上述结论中正确的个数是( )
A. 1 B. 2 C. 3 D. 4
-
科目: 来源: 题型:
查看答案和解析>>【题目】△ABC在直角坐标系中的位置如图,其中A点的坐标是(﹣2,3)
(1)△ABC绕点O顺时针旋转90°得到△A1B1C1,请作出△A1B1C1,并写出A点的对应点A1的坐标;
(2)若△ABC经过平移后A点的对应点A2的坐标是(2,﹣1),请作△A2B2C2,并计算平移的距离.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某片果园有果树80棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低,若该果园每棵果树产果y千克,增种果树x棵,它们之间的函数关系如图所示.

(1)求y与x之间的函数解析式;
(2)在投入成本最低的情况下,增种果树多少棵时,果园可以收获果实6750千克?
(3)当增种果树多少棵时,果园的总产量w(千克)最大?最大产量是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】某工厂,甲负责加工A型零件,乙负责加工B型零件.已知甲加工60个A型零件所用时间和乙加工80个B型零件所用时间相同,每天甲、乙两人共加工两种零件35个.
(1)求甲、乙每天各加工多少个零件;
(2)根据市场预测估计,加工一个A型零件所获得的利润为35元/件,加工一个B型零件所获得的利润每件比A型少5元,现在需要加工甲、乙两种零件共300个且要求所获得的总利润不低于9850元,求至少应该生产多少个A型零件?
相关试题