【题目】如图,已知⊙O分别切△ABC的三条边AB、BC、CA于点D、E、F,S△ABC=10cm2,C△ABC=10cm且∠C=60°.求:
(1)⊙O的半径r;
(2)扇形OEF的面积(结果保留π);
(3)扇形OEF的周长(结果保留π)
![]()
参考答案:
【答案】(1)2cm;(2)
cm2;(3)(
+4)cm.
【解析】试题分析:(1)连接AO、BO、CO,根据S△ABC=S△AOC+S△AOB+S△BOC即可求出⊙O的半径;
(2)因为OF⊥AC,OE⊥BC,∠C=60°可求出∠EOF的度数,代入扇形面积计算公式即可求出扇形的面积;
(3)利用扇形的周长=扇形的弧长+半径×2,即可求出扇形的周长.
试题解析:(1)如图,连接AO、BO、CO,
![]()
则S△ABC=S△AOC+S△AOB+S△BOC
![]()
,
又AB+BC+AC=10,
∴r=2cm;
(2)因为OF⊥AC,OE⊥BC,∠C=60°
所以∠EOF=120°
所以S扇形EOF=
cm2
(3)扇形EOF的周长=
(cm).
考点: 1.面积法;2.扇形面积计算;3.扇形弧长计算.
-
科目: 来源: 题型:
查看答案和解析>>【题目】学校准备在校园内修建一个矩形的绿化带,矩形的面积为定值,它的一边 y与另一边 x之间的函数关系式如下图所示.

(1)绿化带面积是多少?你能写出这一函数表达式吗?
(2)完成下表,并回答问题:如果该绿化带的长不得超过40m,那么它的宽应控制在什么范围内?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,每个图案都由若干个“●”组成,其中第①个图案中有7个“●”,第②个图案中有13个“●”,…,则第⑨个图案中“●”的个数为( )

A.87B.91C.103D.111
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图在Rt△ABC中,∠C=90°,点D是AC的中点,且∠A+∠CDB=90°,过点A、D作⊙O,使圆心O在AB上,⊙O与AB交于点E.

(1)求证:直线BD与⊙O相切;
(2)若AD:AE=4:5,BC=6,求⊙O的直径.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平行四边形ABCD中,对角线相交于点O,AC=AB, E是AB边的中点,G、F为 BC上的点,连接OG和EF,若AB=13, BC=10,GF=5,则图中阴影部分的面积为( )

A.48B.36C.30D.24
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB是⊙O的直径,CB是弦,OD⊥CB于E,交劣弧CB于D,连接AC.

(1)请写出两个不同的正确结论;
(2)若CB=8,ED=2,求⊙O的半径.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:在平行四边形ABCD中,点E、F分别在AD和BC上,点G、H在AC上,且AE=CF,AH=CG.
求证:四边形EGFH是平行四边形.

相关试题