【题目】如图,在平面直角坐标系中,四边形ABCD的四个顶点的坐标分别是A(1,3)、B(2,2)、C(2,1),D(3,3).
(1)以原点O为位似中心,相似比为2,将图形放大,画出符合要求的位似四边形;
(2)在(1)的前提下,写出点A的对应点坐标A′,并说明点A与点A′坐标的关系.![]()
参考答案:
【答案】解:(1)符合要求的位似四边形有两个,如图所示.![]()
(2)点A的对应点A′有2个,分别是A′(2,6)或A′(﹣2,﹣6),
其中点A′的横、纵坐标分别是点A的横、纵坐标分别乘以2或﹣2.
【解析】(1)可以在原点的同旁,也可以在两旁画出放大2倍后的图形;
(2)在原点的同旁时,A点的横、纵坐标都乘以2,在原点的两旁时,A点的横、纵坐标都乘以﹣2.
【考点精析】关于本题考查的作图-位似变换,需要了解对应点到位似中心的距离比就是位似比,对应线段的比等于位似比,位似比也有顺序;已知图形的位似图形有两个,在位似中心的两侧各有一个.位似中心,位似比是它的两要素才能得出正确答案.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,直线AB和CD与直线MN相交.
(1)如图①,EG平分∠BEF,FH平分∠DFE(平分的是一对同旁内角),则∠1与∠2满足________时,AB∥CD;
(2)如图②,EG平分∠MEB,FH平分∠DFE(平分的是一对同位角),则∠1与∠2满足________时,AB∥CD;
(3)如图③,EG平分∠AEF,FH平分∠DFE(平分的是一对内错角),则∠1与∠2满足什么条件时,AB∥CD?请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,将矩形
沿直线
折叠,顶点
恰好落在
边上
点处,已知
,则图中阴影部分面积为( ) 
A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,将三角形向右平移3个单位长度,再向上平移2个单位长度,则平移后三个顶点的坐标为( )

A.(-1,-1),(2,3),(5,1)
B.(-1,1),(3,2),(5,1)
C.(-1,1),(2,3),(5,1)
D.(1,-1),(2,2),(5,1) -
科目: 来源: 题型:
查看答案和解析>>【题目】某校为美化校园,计划对某一区域进行绿化,安排甲.乙 两个工程队完成;已知甲队每天能完成绿化面积是乙队每天能完成绿化面积的2倍,并且在独立完成面积为400
区域的绿化时,甲队比乙队少用4天,求甲.乙两工程队每天能完成绿化的面积分别是多少
. -
科目: 来源: 题型:
查看答案和解析>>【题目】图形的操作过程:
在图①中,将线段A1A2向右平移1个单位到B1B2 , 得到封闭图形A1A2B2B1(即阴影部分);
在图②中,将折线A1A2A3向右平移1个单位到B1B2B3 , 得到封闭图形A1A2A3B3B2B1(即阴影部分).
(1)在图③中,请你类似地画一条有两个折点的折线,同样向右平移1个单位,从而得到一个封闭图形,并用斜线画出阴影;
(2)请你分别写出上述三个图形中除去阴影部分后剩余部分的面积:
S1= , S2= , S3= .
(3)联想与探索:
如图④在一块矩形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽度都是1个单位),请你猜想空白部分表示的草地面积是多少并说明你的猜想是正确的.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线CB∥OA,∠C=∠OAB=120°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF.

(1)求∠EOB的度数.
(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化? 若变化,找出变化规律或求出变化范围;若不变,求出这个比值.
(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA? 若存在,求出∠OBA的度数;若不存在,说明理由.
相关试题