【题目】如图,点A是反比例函数y=﹣
在第二象限内图象上一点,点B是反比例函数y=
在第一象限内图象上一点,直线AB与y轴交于点C,且AC=BC,连接OA、OB,求△AOB的面积.![]()
参考答案:
【答案】解:分别过A、B两点作AD⊥x轴,BE⊥x轴,垂足为D、E,
![]()
∵AC=CB,∴OD=OE,
设A(﹣a,
),则B(a,
),
故S△AOB=S梯形ADBE﹣S△AOD﹣S△BOE
=
(
+
)×2a﹣
a×
﹣
a×
=3.
【解析】分别过A、B两点作AD⊥x轴,BE⊥x轴,垂足为D、E,可证明AD∥OC∥BE,由AC=CB,根据平行线等分线段,得出OD=OE,设出点A、B的坐标,由S△AOB=S梯形ADBE﹣S△AOD﹣S△BOE即可求出结果。
【考点精析】通过灵活运用直角梯形和平行线分线段成比例,掌握一腰垂直于底的梯形是直角梯形;三条平行线截两条直线,所得的对应线段成比例即可以解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知二次函数y=ax2+bx+c的图象如图,其对称轴为直线x=1,给出下列结论: ①b2﹣4ac>0;②2a+b=0;③abc>0;④3a+c>0,
则正确的结论个数为( )
A.1
B.2
C.3
D.4 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,平行四边形ABCD的顶点A、C在双曲线y1=﹣
上,B、D在双曲线y2=
上,k1=2k2(k1>0),AB∥y轴,SABCD=24,则k1= . 
-
科目: 来源: 题型:
查看答案和解析>>【题目】∠AOB内部有一点P,∠AOB=60°.
(1)过点P画PC∥OB,交OA于点C;
(2)过点P画PD⊥OB,交OB于点D,交OA于点E;
(3)过点C画直线OB的垂线段CF;
(4)根据所画图形,∠ACF= 度,∠OED= 度.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知∠1+∠2=180°,∠3=∠B,试说明DE∥BC.下面是部分推导过程,请你在括号内填上推导依据或内容:
证明:∵∠1+∠2=180°(已知)
∠1=∠4 ( )
∴∠2+∠4=180°(等量代换)
∵EH∥AB( )
∴∠B= ( )
∵∠3=∠B(已知)
∴∠3=∠EHC(等量代换)
∴DE∥BC ( )

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,将三角形ABC向左平移至点B与原点重合,得三角形A′OC′.
(1)直接写出三角形ABC的三个顶点的坐标A B C ;
(2)画出三角形A′OC′;
(3)求三角形ABC的面积;
(4)直接与出A′C′与y轴交点的坐标 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠B=90°,点O在边AB上,以点O为圆心,OA为半径的圆经过点C,过点C作直线MN,使∠BCM=2∠A.

(1)判断直线MN与⊙O的位置关系,并说明理由;
(2)若OA=4,∠BCM=60°,求图中阴影部分的面积.
相关试题