【题目】如图,已知∠1+∠2=180°,∠3=∠B,试说明DE∥BC.下面是部分推导过程,请你在括号内填上推导依据或内容:
证明:∵∠1+∠2=180°(已知)
∠1=∠4 ( )
∴∠2+∠4=180°(等量代换)
∵EH∥AB( )
∴∠B= ( )
∵∠3=∠B(已知)
∴∠3=∠EHC(等量代换)
∴DE∥BC ( )
![]()
【答案】对顶角相等;同旁内角互补,两直线平行;EHC;两直线平行,同位角相等;内错角相等,两直线平行.
【解析】
根据对顶角相等,得出∠1=∠4,根据等量代换可知∠2+∠4=180°,根据同旁内角互补,两直线平行,得出EH∥AB,再由两直线平行,同位角相等,得出∠B=∠EHC,已知∠3=∠B,由等量代换可知∠3=∠EHC,再根据内错角相等,两直线平行,即可得出DE∥BC.
解:∵∠1+∠2=180°,(已知)
∠1=∠4,(对顶角相等)
∴∠2+∠4=180°,(等量代换)
∴EH∥AB,(同旁内角互补,两直线平行)
∴∠B=∠EHC,(两直线平行,同位角相等)
∵∠3=∠B,(已知)
∴∠3=∠EHC,(等量代换)
∴DE∥BC,(内错角相等,两直线平行)
故答案为:对顶角相等;同旁内角互补,两直线平行;EHC;两直线平行,同位角相等;内错角相等,两直线平行.