【题目】如图,已知∠1+∠2=180°,∠3=∠B,试说明DE∥BC.下面是部分推导过程,请你在括号内填上推导依据或内容:
证明:∵∠1+∠2=180°(已知)
∠1=∠4 ( )
∴∠2+∠4=180°(等量代换)
∵EH∥AB( )
∴∠B= ( )
∵∠3=∠B(已知)
∴∠3=∠EHC(等量代换)
∴DE∥BC ( )
![]()
参考答案:
【答案】对顶角相等;同旁内角互补,两直线平行;EHC;两直线平行,同位角相等;内错角相等,两直线平行.
【解析】
根据对顶角相等,得出∠1=∠4,根据等量代换可知∠2+∠4=180°,根据同旁内角互补,两直线平行,得出EH∥AB,再由两直线平行,同位角相等,得出∠B=∠EHC,已知∠3=∠B,由等量代换可知∠3=∠EHC,再根据内错角相等,两直线平行,即可得出DE∥BC.
解:∵∠1+∠2=180°,(已知)
∠1=∠4,(对顶角相等)
∴∠2+∠4=180°,(等量代换)
∴EH∥AB,(同旁内角互补,两直线平行)
∴∠B=∠EHC,(两直线平行,同位角相等)
∵∠3=∠B,(已知)
∴∠3=∠EHC,(等量代换)
∴DE∥BC,(内错角相等,两直线平行)
故答案为:对顶角相等;同旁内角互补,两直线平行;EHC;两直线平行,同位角相等;内错角相等,两直线平行.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,平行四边形ABCD的顶点A、C在双曲线y1=﹣
上,B、D在双曲线y2=
上,k1=2k2(k1>0),AB∥y轴,SABCD=24,则k1= . 
-
科目: 来源: 题型:
查看答案和解析>>【题目】∠AOB内部有一点P,∠AOB=60°.
(1)过点P画PC∥OB,交OA于点C;
(2)过点P画PD⊥OB,交OB于点D,交OA于点E;
(3)过点C画直线OB的垂线段CF;
(4)根据所画图形,∠ACF= 度,∠OED= 度.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点A是反比例函数y=﹣
在第二象限内图象上一点,点B是反比例函数y=
在第一象限内图象上一点,直线AB与y轴交于点C,且AC=BC,连接OA、OB,求△AOB的面积.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,将三角形ABC向左平移至点B与原点重合,得三角形A′OC′.
(1)直接写出三角形ABC的三个顶点的坐标A B C ;
(2)画出三角形A′OC′;
(3)求三角形ABC的面积;
(4)直接与出A′C′与y轴交点的坐标 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠B=90°,点O在边AB上,以点O为圆心,OA为半径的圆经过点C,过点C作直线MN,使∠BCM=2∠A.

(1)判断直线MN与⊙O的位置关系,并说明理由;
(2)若OA=4,∠BCM=60°,求图中阴影部分的面积. -
科目: 来源: 题型:
查看答案和解析>>【题目】在抗洪抢险中,解放军战士的冲锋舟加满油沿东西方向的河流抢救灾民,早晨从
地出发,晚上到达
地,约定向东为正方向,当天的航行路程记录如下(单位:千米):
,
,
,
,
,
,
,
.(1)请你帮忙确定
地位于
地的什么方向,距离
地多少千米? (2)若冲锋舟每千米耗油
升,邮箱容量为
升,求冲锋舟当天救灾过程中至少还需补充多少升油?
相关试题