【题目】△ABC的顶点坐标为A(﹣2,3)、B(﹣3,1)、C(﹣1,2),以坐标原点O为旋转中心,顺时针旋转90°,得到△A′B′C′,点B′、C′分别是点B、C的对应点.![]()
(1)求过点B′的反比例函数解析式;
(2)求线段CC′的长.
参考答案:
【答案】
(1)
解:如图所示:由图知B点的坐标为(﹣3,1),根据旋转中心O,旋转方向顺时针,旋转角度90°,
点B的对应点B′的坐标为(1,3),
设过点B′的反比例函数解析式为y=
,
∴k=3×1=3,
∴过点B′的反比例函数解析式为y= ![]()
(2)
解:∵C(﹣1,2),
∴OC=
=
,
∵△ABC以坐标原点O为旋转中心,顺时针旋转90°,
∴OC′=OC=
,
∴CC′=
= ![]()
【解析】(1)据图形旋转方向以及旋转中心和旋转角度得出对应点,根据待定系数法,即可求出解.
(2)根据勾股定理求得OC,然后根据旋转的旋转求得OC′,最后根据勾股定理即可求得.本题考查了图形的旋转、勾股定理的应用以及待定系数法求反比例函数的解析式,抓住旋转的三要素:旋转中心,旋转方向,旋转角度是解题关键.
-
科目: 来源: 题型:
查看答案和解析>>【题目】计算:
+2sin60°+|3﹣
|﹣(
﹣π)0 . -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为40和28,则△EDF的面积为( )

A. 12 B. 6 C. 7 D. 8
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在四边形ABCD中,AD∥BC,DE⊥BC,垂足为点E,连接AC交DE于点F,点G为AF的中点,∠ACD=2∠ACB.若AF=50,EC=7,则DE的长为( )

A. 14 B. 21 C. 24 D. 25
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠C=90°,AC=3,BC=4,点O是BC中点,将△ABC绕点O旋转得△A′B' C′,则在旋转过程中点A、C′两点间的最大距离是_______.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC的一边AB上有一点P.
(1)能否在另外两边AC和BC上各找一点M、N,使得△PMN的周长最短.若能,请画出点M、N的位置,若不能,请说明理由;
(2)若∠ACB=40°,在(1)的条件下,求出∠MPN的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知如图,在矩形ABCD中,AB=4cm,BC=7cm,
(1)点F在边BC上,且 BF=3,若点P从点A出发,以每秒1cm的速度沿A→D→C→F运动,设点P运动的时间为t秒,求当t为何值时,△AFP为等腰三角形?




(2)如图2,将长方形ABCD折叠,折痕为MN,点A的对应点A′落在线段BC上,当点A′ 在BC上移动时,点M、N也随之移动,若限定点M、N分别在线段AB、AD上移动,则点A′ 在线段BC上可移动的最大距离是___________.

相关试题