【题目】如图,直线y=2x+2与y轴交于A点,与反比例函数y=
(x>0)的图象交于点M,过M作MH⊥x轴于点H,且tan∠AHO=2.
(1)求k的值;
(2)点N(a,1)是反比例函数y=
(x>0)图象上的点,在x轴上是否存在点P,使得PM+PN最小?若存在,求出点P的坐标;若不存在,请说明理由.
![]()
参考答案:
【答案】(1)4;(2)存在,P点坐标为(
,0).
【解析】
试题分析:(1)根据直线解析式求A点坐标,得OA的长度;根据三角函数定义可求OH的长度,得点M的横坐标;根据点M在直线上可求点M的坐标.从而可求K的值;(2)根据反比例函数解析式可求N点坐标;作点N关于x轴的对称点N1,连接MN1与x轴的交点就是满足条件的P点位置.
试题解析:(1)由y=2x+2可知A(0,2),即OA=2.∵tan∠AHO=2,∴OH=1.∵MH⊥x轴,∴点M的横坐标为1.∵点M在直线y=2x+2上,∴点M的纵坐标为4.即M(1,4).∵点M在y=
上,∴k=1×4=4.(2)存在.过点N作N关于x轴的对称点N1,连接MN1,交x轴于P(如图所示).此时PM+PN最小.∵点N(a,1)在反比例函数y=
(x>0)上,∴a=4.即点N的坐标为(4,1).∵N与N1关于x轴的对称,N点坐标为(4,1),∴N1的坐标为(4,﹣1).设直线MN1的解析式为y=kx+b.由
解得k=﹣
,b=
.∴直线MN1的解析式为y=﹣
x+
.令y=0,得x=
.∴P点坐标为(
,0).
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知直线y=
x与双曲线y=
(k>0)交于A,B两点,且点A的横坐标为4.点C是双曲线上一点,且纵坐标为8,则△AOC的面积为( )
A. 8 B. 32 C. 10 D. 15
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,矩形ABCD中,AB=6,BD=10.Rt△EFG的直角边GE在CB的延长线上,E点与矩形的B点重合,∠FGE=90°,已知GE+AB=BC,FG=2GE.将矩形ABCD固定,把Rt△EFG沿着射线BC方向按每秒1个单位运动,直到点G到达点C停止运动.设Rt△EFG的运动时间为t秒(t>0).
(1)求出线段FG的长,并求出当点F恰好经过BD时,运动时间t的值;
(2)在整个运动过程中,设Rt△EFG与△BCD的重合部分面积为S,请直接写出S与t之间的函数关系式和相应的自变量t的取值范围.

-
科目: 来源: 题型:
查看答案和解析>>【题目】大双,小双的妈妈申购到一张北京奥运会的门票,兄弟俩决定分别用标有数字且除数字以外没有其它任何区别的小球,各自设计一种游戏确定谁去.
大双:A袋中放着分别标有数字1,2,3的三个小球,B袋中放着分别标有数字4,5的两个小球,且都已各自搅匀,小双蒙上眼睛从两个口袋中各取出1个小球,若两个小球上的数字之积为偶数,则大双得到门票;若积为奇数,则小双得到门票.
小双:口袋中放着分别标有数字1,2,3的三个小球,且已搅匀,大双,小双各蒙上眼睛有放回地摸1次,大双摸到偶数就记2分,摸到奇数记0分;小双摸到奇数就记1分,摸到偶数记0分,积分多的就得到门票.(若积分相同,则重复第二次.)
(1)大双设计的游戏方案对双方是否公平?请你运用列表或树状图说明理由;
(2)小双设计的游戏方案对双方是否公平?不必说理.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知二次函数y=ax2+bx+c(a≠0),其中自变量x与函数值y之间满足下面的对应关系:
x
……
3
5
7
……
y
……
3.5
3.5
-2
……
则a+b+c=______.
-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读解题过程,回答问题. 如图,OC在∠AOB内,∠AOB和∠COD都是直角,且∠BOC=30°,求∠AOD的度数.
解:过O点作射线OM,使点M,O,A在同一直线上.
因为∠MOD+∠BOD=90°,∠BOC+∠BOD=90°,
所以∠BOC=∠MOD,
所以∠AOD=180°﹣∠BOC=180°﹣30°=150°
(1)如果∠BOC=60°,那么∠AOD等于多少度?如果∠BOC=n°,那么∠AOD等于多少度?
(2)如果∠AOB=∠DOC=x°,∠AOD=y°,求∠BOC的度数. -
科目: 来源: 题型:
查看答案和解析>>【题目】当实数m满足______条件时,一元二次方程x2-2x-m=0有两个不相等的实数根.
相关试题