【题目】把一个正五边形绕它的中心旋转,至少旋转______度,就能与原来的位置重合.
参考答案:
【答案】72
【解析】
根据旋转的性质,最小旋转角即为正五边形的中心角
正五边形中心与五个顶点的连形成5个全等的三角形,且每个三角形的顶角为72°,
正五边形绕着它的中心旋转后与它本身重合,最小的旋转角度数是72°,
-
科目: 来源: 题型:
查看答案和解析>>【题目】直角三角板ABC中,∠A=30°,BC=1.将其绕直角顶点C逆时针旋转一个角
(
且
),得到Rt△
.
(1)如图,当边
经过点B时,求旋转角
的度数;(2)在三角板旋转的过程中,边
与AB所在直线交于点D,过点 D作DE∥
交
边于点E,联结BE.①当
时,设AD=
,BE=
,求
与
之间的函数解析式及自变量
的取值范围;②当
时,求AD的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】观察探究,解决问题.在四边形ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点,顺次连接E、F、G、H得到的四边形EFGH叫做中点四边形.
(1)如图1,求证:中点四边形EFGH是平行四边形;
(2)请你探究并填空:
①当四边形ABCD变成平行四边形时,它的中点四边形是;
②当四边形ABCD变成矩形时,它的中点四边形是;
③当四边形ABCD变成正方形时,它的中点四边形是;
(3)如图2,当中点四边形EFGH为矩形时,对角线EG与FH相交于点O,P为EH上的动点,过点P作PM⊥EG,PN⊥FH,垂足分别为M、N,若EF=a,FG=b,请判断PM+PN的长是否为定值?若是,求出此定值;若不是,说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】四边形ABCD中,∠A=∠C=90°,BE、DF分别是∠ABC、∠ADC的平分线.求证:

(1)∠1+∠2=90°;
(2)BE∥DF. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图1是一个长为4a、宽为b的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成的一个“回形”正方形(如图2).

(1)图②中的阴影部分的面积为;
(2)观察图②请你写出 (a+b)2 , (a﹣b)2 , ab之间的等量关系是;
(3)根据(2)中的结论,若x+y=4,xy=
,则(x﹣y)2=;
(4)实际上通过计算图形的面积可以探求相应的等式.如图③,你发现的等式是 . -
科目: 来源: 题型:
查看答案和解析>>【题目】若抛物线L:y=ax2+bx+c(a,b,c是常数,abc≠0)与直线l都经过y轴上的一点P,且抛物线L的顶点Q在直线l上,则称此直线l与该抛物线L具有“一带一路”关系.此时,直线l叫做抛物线L的“带线”,抛物线L叫做直线l的“路线”.
(1)若直线y=mx+1与抛物线y=x2﹣2x+n具有“一带一路”关系,求m,n的值;
(2)若某“路线”L的顶点在反比例函数y=
的图象上,它的“带线”l的解析式为y=2x﹣4,求此“路线”L的解析式;(3)当常数k满足
≤k≤2时,求抛物线L:y=ax2+(3k2﹣2k+1)x+k的“带线”l与x轴,y轴所围成的三角形面积的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】某校去年对实验器材的投资为2万元,预计今明两年的投资总额为8万元,若设该校这两年在实验器材投资上的平均增长率为x,则可列方程:_____.
相关试题