【题目】若抛物线L:y=ax2+bx+c(a,b,c是常数,abc≠0)与直线l都经过y轴上的一点P,且抛物线L的顶点Q在直线l上,则称此直线l与该抛物线L具有“一带一路”关系.此时,直线l叫做抛物线L的“带线”,抛物线L叫做直线l的“路线”.
(1)若直线y=mx+1与抛物线y=x2﹣2x+n具有“一带一路”关系,求m,n的值;
(2)若某“路线”L的顶点在反比例函数y=
的图象上,它的“带线”l的解析式为y=2x﹣4,求此“路线”L的解析式;
(3)当常数k满足
≤k≤2时,求抛物线L:y=ax2+(3k2﹣2k+1)x+k的“带线”l与x轴,y轴所围成的三角形面积的取值范围.
参考答案:
【答案】(1)m的值为﹣1,n的值为1.(2)y=2(x+1)2﹣6或y=﹣
(x﹣3)2+2.(3)
≤S≤
.
【解析】
试题分析:(1)确定直线y=mx+1与y轴的交点坐标,将其代入抛物线解析式中即可求出n的值;再根据抛物线的解析式找出顶点坐标,将其代入直线解析式中即可得出结论;(2)确定直线与反比例函数图象的交点坐标,由此设出抛物线的解析式,再由直线的解析式找出直线与x轴的交点坐标,将其代入抛物线解析式中即可得出结论;(3)由抛物线解析式找出抛物线与y轴的交点坐标,再根据抛物线的解析式找出其顶点坐标,由两点坐标结合待定系数法即可得出与该抛物线对应的“带线”l的解析式,找出该直线与x、y轴的交点坐标,结合三角形的面积找出面积S关于k的关系上,由二次函数的性质即可得出结论.
试题解析:(1)令直线y=mx+1中x=0,则y=1,
即直线与y轴的交点为(0,1);
将(0,1)代入抛物线y=x2﹣2x+n中,
得n=1.
∵抛物线的解析式为y=x2﹣2x+1=(x﹣1)2,
∴抛物线的顶点坐标为(1,0).
将点(1,0)代入到直线y=mx+1中,
得:0=m+1,解得:m=﹣1.
答:m的值为﹣1,n的值为1.
(2)将y=2x﹣4代入到y=
中有,
2x﹣4=
,即2x2﹣4x﹣6=0,
解得:x1=﹣1,x2=3.
∴该“路线”L的顶点坐标为(﹣1,﹣6)或(3,2).
令“带线”l:y=2x﹣4中x=0,则y=﹣4,
∴“路线”L的图象过点(0,﹣4).
设该“路线”L的解析式为y=m(x+1)2﹣6或y=n(x﹣3)2+2,
由题意得:﹣4=m(0+1)2﹣6或﹣4=n(0﹣3)2+2,
解得:m=2,n=﹣
.
∴此“路线”L的解析式为y=2(x+1)2﹣6或y=﹣
(x﹣3)2+2.
(3)令抛物线L:y=ax2+(3k2﹣2k+1)x+k中x=0,则y=k,
即该抛物线与y轴的交点为(0,k).
抛物线L:y=ax2+(3k2﹣2k+1)x+k的顶点坐标为(﹣
,
),
设“带线”l的解析式为y=px+k,
∵点(﹣
,
)在y=px+k上,
∴
=﹣p
+k,
解得:p=
.
∴“带线”l的解析式为y=
x+k.
令∴“带线”l:y=
x+k中y=0,则0=
x+k,
解得:x=﹣
.
即“带线”l与x轴的交点为(﹣
,0),与y轴的交点为(0,k).
∴“带线”l与x轴,y轴所围成的三角形面积S=
|﹣
|×|k|,
∵
≤k≤2,
∴
≤
≤2,
∴S=
=
=
,
当
=1时,S有最大值,最大值为
;
当
=2时,S有最小值,最小值为
.
故抛物线L:y=ax2+(3k2﹣2k+1)x+k的“带线”l与x轴,y轴所围成的三角形面积的取值范围为
≤S≤
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】四边形ABCD中,∠A=∠C=90°,BE、DF分别是∠ABC、∠ADC的平分线.求证:

(1)∠1+∠2=90°;
(2)BE∥DF. -
科目: 来源: 题型:
查看答案和解析>>【题目】把一个正五边形绕它的中心旋转,至少旋转______度,就能与原来的位置重合.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1是一个长为4a、宽为b的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成的一个“回形”正方形(如图2).

(1)图②中的阴影部分的面积为;
(2)观察图②请你写出 (a+b)2 , (a﹣b)2 , ab之间的等量关系是;
(3)根据(2)中的结论,若x+y=4,xy=
,则(x﹣y)2=;
(4)实际上通过计算图形的面积可以探求相应的等式.如图③,你发现的等式是 . -
科目: 来源: 题型:
查看答案和解析>>【题目】某校去年对实验器材的投资为2万元,预计今明两年的投资总额为8万元,若设该校这两年在实验器材投资上的平均增长率为x,则可列方程:_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列运算正确的是( )
A. 3m2﹣2m2=1 B. 5m4﹣2m3=3m C. m2n﹣mn2=0 D. 3m﹣2m=m
-
科目: 来源: 题型:
查看答案和解析>>【题目】若一个角的补角比它的余角的2倍多15°,则这个角的度数是 .
相关试题