【题目】如图,在等边△ABC中,AB=4,D是BC的中点,将△ABD绕点A旋转后得到△ACE,连接DE交AC于点F,则△AEF的面积为_______.
![]()
参考答案:
【答案】![]()
【解析】
首先,利用等边三角形的性质求得AD=2
;然后根据旋转的性质、等边三角形的性质推知△ADE为等边三角形,则DE=AD,便可求出EF和AF,从而得到△AEF的面积.
解:∵在等边△ABC中,∠B=60,AB=4,D是BC的中点,
∴AD⊥BC,∠BAD=∠CAD=30,
∴AD=ABcos30=4×
=2
,
根据旋转的性质知,∠EAC=∠DAB=30,AD=AE,
∴∠DAE=∠EAC+∠CAD=60,
∴△ADE的等边三角形,
∴DE=AD=2
,∠AEF=60,
∵∠EAC=∠CAD
∴EF=DF=
,AF⊥DE
∴AF=EFtan60=
×
=3,
∴S△AEF=
EF×AF=
×
×3=
.
故答案为:
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,大拇指与小拇指尽量张开时,两指尖的距离称为指距.人体构造学的研究成果表明,一般情况下人的指距
和身高
成如下所示的关系.
(1)直接写出身高
与指距
的函数关系式: .(2)姚明的身高是226厘米,可预测他的指距约为多少?(精确到0.1厘米)

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴的正半轴相交于A,B两点,与y轴相交于点C,对称轴为直线x=2,且OA=OC.有下列结论:①abc<0;②3b+4c<0;③c>﹣1;④关于x的方程ax2+bx+c=0有一个根为﹣
,其中正确的结论个数是( )
A. 1 B. 2 C. 3 D. 4
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知直线
与
轴、
轴分别相交于点
、点
,
,若将
沿直线
折叠,使点
与点
重合,折痕
与
轴交于点
,与
交于点
.(1)求
的值;(2)求点
的坐标;(3)求直线
的表达式.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,AB=13,AC=5,BC边上的中线AD=6,点E在AD的延长线上,且ED=AD.

(1)求证:BE∥AC;
(2)求∠CAD的大小;
(3)求点A到BC的距离.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,将△ABC放在每个小正方形的边长为1的网格中,点A,点B,点C均落在格点上.
(1)计算△ABC的周长等于_____.
(2)点P、点Q(不与△ABC的顶点重合)分别为边AB、BC上的动点,4PB=5QC,连接AQ、PC.当AQ⊥PC时,请在如图所示的网格中,用无刻度的直尺,画出线段AQ、PC,并简要说明点P、Q的位置是如何找到的(不要求证明).
___________________________.

-
科目: 来源: 题型:
查看答案和解析>>【题目】为了了解某校九年级学生体育测试成绩情况,现从中随机抽取部分学生的体育成绩,并用得到的数据绘制了统计图①和图②,请根据图中提供的信息,回答下列问题:

(1)本次随机抽样调查的学生人数为______,图①中的m的值为______;
(2)求本次抽样调查获取的样本数据的众数、中位数和平均数;
(3)若该校九年级共有学生300人,如果体育成绩达28分以上(含28分)为优秀,请估计该校九年级学生体育成绩达到优秀的人数.
相关试题