【题目】如图,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD. ![]()
(1)求证:CD是⊙O的切线.
(2)过点B作⊙O的切线交CD的延长线于点E,若OB=5,BC=18,求BE的长.
参考答案:
【答案】
(1)证明:连接OD.
![]()
∵AB是直径,
∴∠BDA=90°,
∴∠ABD+∠BAD=90°,
∵OD=OA,
∴∠ODA=∠OAD,
又∵∠CDA=∠CBD,
∴∠CDA+∠ODA=90°,即∠ODC=90°,
∴OD⊥CD,
∴CD是⊙O的切线
(2)OC=BC﹣OB=18﹣5=13,
直角△OCD中,OD=OB=5,
CD=
=
=12,
∵BE是圆的切线,
∴∠EBC=90°,
同理∠ODC=90°,
∴∠EBC=∠ODC,
又∵∠C=∠C,
∴△EBC∽△ODC,
∴
=
,即
=
,
解得:BE=
.
【解析】(1)连接OD,根据AB所对的角是直角,以及等边对等角,证明∠ODC=90°,则可以证得;(2)在直角△ODC中利用勾股定理求得CD的长,然后根据△ABC∽△ODC,利用相似三角形的对应边相等即可求解.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=﹣x2+2x+3与y轴交于点C,顶点为D.

(1)求顶点D的坐标.
(2)求△OCD的面积. -
科目: 来源: 题型:
查看答案和解析>>【题目】一个不透明的布袋里装有3个球,其中2个红球,1个白球,它们除颜色外其余都相同.
(1)摸出1个球,记下颜色后放回,并搅匀,再摸出1个球,求两次摸出的球恰好颜色不同的概率(请用“画树状图”或“列表”等方法写出分析过程);
(2)现再将n个白球放入布袋,搅匀后,使摸出1个球是白球的概率为
,求n的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】(1)已知∠AOB是直角,OM平分∠AOC,ON平分∠BOC,求∠MON与∠AOB的关系.
(2)如果(1)中,改变∠AOB的大小,其他条件不变,求∠MON与∠AOB的关系.
(3)你从(1),(2)的结果中能发现什么规律?

-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,O为坐标原点,B在x轴上,四边形OACB为平行四边形,且∠AOB=60°,反比例函数
(k>0)在第一象限内过点A,且与BC交于点F.(1)若OA=10,求反比例函数的解析式;(2)若F为BC的中点,且S△AOF=24
,求OA长及点C坐标;(3)在(2)的条件下,过点F作EF∥OB交OA于点E(如图2),若点P是直线EF上一个动点,连结,PA,PO,问是否存在点P,使得以P,A,O三点构成的三角形是直角三角形?若存在,请指出这样的P点有几个,并直接写出其中二个P点坐标;若不存在,请说明了理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在直角
中,∠C=90°,DC = 2,∠CAB的平分线AD交BC于点D,DE垂直平分AB.求∠B的度数和DB的长. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图.在平面直角坐标系中,点A(3,0),B(0,﹣4),C是x轴上一动点,过C作CD∥AB交y轴于点D.

(1)
的值是 .
(2)若以A,B,C,D为顶点的四边形的面积等于54,求点C的坐标.
(3)将△AOB绕点A按顺时针方向旋转90°得到△AO′B′,设D的坐标为(0,n),当点D落在△AO′B′内部(包括边界)时,求n的取值范围.(直接写出答案即可)
相关试题