【题目】如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC交AB于E,交AC于F,过点O作OD⊥AC于D,下列四个结论:
![]()
①EF=BE+CF;
②∠BOC=90°+
∠A;
③点O到△ABC各边的距离相等;
④设OD=m,AE+AF=n,则
.
其中正确的结论是____.(填序号)
参考答案:
【答案】①②③
【解析】
由在△ABC中,∠ABC和∠ACB的平分线相交于点O,根据角平分线的定义与三角形的内角和定理,即可求出②∠BOC=90°+
∠A正确;由平行线的性质和角平分线的定义可得△BEO和△CFO是等腰三角形可得①EF=BE+CF正确;由角平分线的性质得出点O到△ABC各边的距离相等,故③正确;由角平分线定理与三角形的面积求法,设OD=m,AE+AF=n,则△AEF的面积=
,④错误.
在△ABC中,∠ABC和∠ACB的平分线相交于点O,
∴∠OBC=
∠ABC,∠OCB=
∠ACB,∠A+∠ABC+∠ACB=180°,
∴∠OBC+∠OCB=90°-
∠A,
∴∠BOC=180°-(∠OBC+∠OCB)=90°,故②∠BOC=90°+
∠A正确;
在△ABC中,∠ABC和∠ACB的平分线相交于点O,
∴∠OBC=∠EOB,∠OCB=∠OCF,
∵EF∥BC,
∴∠OBC=∠EOB,∠OCB=∠FOC,
∠EOB=∠OBE,∠FOC=∠OCF,
∴BE=OE,CF=OF,
∴EF=OE+OF=BE+CF,
即①EF=BE+CF正确;
过点O作OM⊥AB于M,作ON⊥BC于点N,连接AO,
∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,
∴ON=OD=OM=m,即③点O到△ABC各边的距离相等正确;
∴S△AEF=S△AOE+ S△AOF=
AE·OM+
AF·OD=
OD·(AE+AF)=
mn,故④错误;
故选①②③
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,点D为BC边的中点,点E为AC上一点,将∠C沿DE翻折,使点C落在AB上的点F处,若∠AEF=50°,则∠A的度数为____.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,
中,
,点
在
的延长线上,
,
于
,
交于点
.
(1)如图1,请写出
与
的数量关系;(2)如图2,若
平分
,
,求证:
;(3)在(2)的条件下,如图3,连接
,若
是
中点,
是
中点,
,
,
,求
的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】为解决“最后一公里”的交通接驳问题,某市投放了大量公租自行车使用,到2014年底,全市已有公租自行车25000辆,租赁点600个,预计到2016年底,全市将有公租自行车50000辆,并且平均每个租赁点的公租自行车数量是2014年底平均每个租赁点的公租自行车数量的1.2倍,预计到2016年底,全市将有租赁点多少个?
-
科目: 来源: 题型:
查看答案和解析>>【题目】在以下说法中:①实数分为正有理数、
、负有理数.②实数和数轴上的点一一对应. ③过直线外一点有且只有一条直线和已知直线垂直.④过一点有且只有一条直线和已知直线 平行.⑤假命题不是命题.⑥如果两条直线都和第三条直线平行,那么这两条直线也互相平 行.⑦若一个数的立方根和平方根相同,那么这个数只能是
. 其中说法正确的个数是( )A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】A,B,C三人玩篮球传球游戏,游戏规则是:第一次传球由A将球随机地传给B,C两人中的某一人,以后的每一次传球都是由上次的传球者随机地传给其他两人中的某一人.
(1)求两次传球后,球恰在B手中的概率;
(2)求三次传球后,球恰在A手中的概率. -
科目: 来源: 题型:
查看答案和解析>>【题目】(8分)如图,在△ABC中,AD⊥BC于D,AE平分∠DAC,∠BAC=80°,∠B=60°,求∠AEC的度数.

相关试题