【题目】问题情境1:如图1,AB∥CD,P是ABCD内部一点,P在BD的右侧,探究∠B,∠P,∠D之间的关系?
小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可得∠B,∠P,∠D之间满足 关系.(直接写出结论)
![]()
问题情境2
如图3,AB∥CD,P是AB,CD内部一点,P在BD的左侧,可得∠B,∠P,∠D之间满足 关系.(直接写出结论)
问题迁移:请合理的利用上面的结论解决以下问题:
已知AB∥CD,∠ABE与∠CDE两个角的角平分线相交于点F
(1)如图4,若∠E=80°,求∠BFD的度数;
(2)如图5中,∠ABM=
∠ABF,∠CDM=
∠CDF,写出∠M与∠E之间的数量关系并证明你的结论.
(3)若∠ABM=
∠ABF,∠CDM=
∠CDF,设∠E=m°,用含有n,m°的代数式直接写出∠M= .
参考答案:
【答案】问题情境1:∠B+∠BPD+∠D=360°,∠P=∠B+∠D;(1)140°;(2)
∠E+∠M=60°(3)![]()
【解析】
问题情境1:过点P作PE∥AB,根据平行线的性质,得到∠B+∠BPE=180°,∠D+∠DPE=180°,进而得出:∠B+∠P+∠D=360°;
问题情境2:过点P作EP∥AB,再由平行线的性质即可得出结论;
②,③根据①中的方法可得出结论;
问题迁移:
(1)如图4,根据角平分线定义得:∠EBF=
∠ABE,∠EDF=
∠CDE,由问题情境1得:∠ABE+∠E+∠CDE=360°,再根据四边形的内角和可得结论;
(2)设∠ABM=x,∠CDM=y,则∠FBM=2x,∠EBF=3x,∠FDM=2y,∠EDF=3y,根据问题情境和四边形内角和得等式可得结论;
(3)同(2)将3倍换为n倍,同理可得结论.
问题情境1:
如图2,∠B+∠BPD+∠D=360°,理由是:
过P作PE∥AB,
![]()
∵AB∥CD,PE∥AB,
∴AB∥PE∥CD,
∴∠B+∠BPE=180°,∠D+∠DPE=180°,
∴∠B+∠BPE+∠D+∠DPE=360°,
即∠B+∠BPD+∠D=360°,
故答案为:∠B+∠P+∠D=360°;
问题情境2
如图3,∠P=∠B+∠D,理由是:
过点P作EP∥AB,
![]()
∵AB∥CD,
∴AB∥CD∥EP,
∴∠B=∠BPE,∠D=∠DPE,
∴∠BPD=∠B+∠D,
即∠P=∠B+∠D;
故答案为:∠P=∠B+∠D;
问题迁移:
(1)如图4,∵BF、DF分别是∠ABE和∠CDE的平分线,
∴∠EBF=
∠ABE,∠EDF=
∠CDE,
由问题情境1得:∠ABE+∠E+∠CDE=360°,
∵∠E=80°,
∴∠ABE+∠CDE=280°,
∴∠EBF+∠EDF=140°,
∴∠BFD=360°﹣80°﹣140°=140°;
(2)如图5,
∠E+∠M=60°,理由是:
∵设∠ABM=x,∠CDM=y,则∠FBM=2x,∠EBF=3x,∠FDM=2y,∠EDF=3y,
由问题情境1得:∠ABE+∠E+∠CDE=360°,
∴6x+6y+∠E=360°,
∠E=60﹣x﹣y,
∵∠M+∠EBM+∠E+∠EDM=360°,
∴6x+6y+∠E=∠M+5x+5y+∠E,
∴∠M=x+y,
∴
∠E+∠M=60°;
(3)如图5,∵设∠ABM=x,∠CDM=y,则∠FBM=(n﹣1)x,∠EBF=nx,∠FDM=(n﹣1)y,∠EDF=ny,
由问题情境1得:∠ABE+∠E+∠CDE=360°,
∴2nx+2ny+∠E=360°,
∴x+y=
,
∵∠M+∠EBM+∠E+∠EDM=360°,
∴2nx+2ny+∠E=∠M+(2n﹣1)x+(2n﹣1)y+∠E,
∴∠M=
;
故答案为:∠M=
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在直线l上依次摆放着4023个正方形,已知斜放着放置的2011个正方形的面积分别是1、2、3、…、2011,正放置的2012个正方形的面积依次是S1、S2、S3、…S2012,请猜想:S1+S2+S3+S4+…S2012=_____.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平行四边形ABCD中,M、N分别是边AD、BC边上的中点,且△ABM≌△DCM;E、F分别是线段BM、CM的中点.
(1)求证:平行四边形ABCD是矩形.
(2)求证:EF与MN互相垂直.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.

(1)求证:AF=DC;
(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知A(-4,n),B(1,-4)是一次函数
的图象和反比例函数
的图象的两个交点.
(1)求反比例函数和一次函数的解析式;
(2)求直线
与
轴的交点
的坐标及△
的面积;(3)求不等式
的解集(请直接写出答案). -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知四边形ABCD中,AB//DC,AB=DC,且AB=6cm,BC=8cm,对角线AC =10cm,
(1)求证:四边形ABCD是矩形;
(2)如图(2),若动点Q从点C出发,在CA边上以每秒5cm的速度向点A匀速运动,同时动点P从点B出发,在BC边上以每秒4cm的速度向点C匀速运动,运动时间为t秒(0≤t<2),连接BQ、AP,若AP⊥BQ,求t的值;
(3)如图(3),若点Q在对角线AC上,CQ=4cm,动点P从B点出发,以每秒1cm的速度沿BC运动至点C止.设点P运动了t秒,请你探索:从运动开始,经过多少时间,以点Q、P、C为顶点的三角形是等腰三角形?请求出所有可能的结果.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,在菱形
中,
为边
的中点,
与对角线
交于点
,过
作
于点
,
.
若
,求
的长;
求证:
.
相关试题