【题目】如图,在平行四边形ABCD中,M、N分别是边AD、BC边上的中点,且△ABM≌△DCM;E、F分别是线段BM、CM的中点.
(1)求证:平行四边形ABCD是矩形.
(2)求证:EF与MN互相垂直.
![]()
参考答案:
【答案】(1)见解析;(2)见解析.
【解析】
(1)由平行四边形的性质和全等三角形的性质得出∠A=90°,即可得出结论;
(2)先证明四边形MENF是平行四边形,再证明平行四边形MENF是菱形,即可得出结论.
(1)∵四边形ABCD是平行四边形,
∴AB∥DC,AB=DC,
∴∠A+∠D=180°,
又∵△ABM≌△DCM,
∴∠A=∠D=90°,
∴平行四边形ABCD是矩形;
(2)∵N、E、F分别是BC、BM、CM的中点,
∴NE∥CM,NE=CM,MF=CM,
∴NE=FM,NE∥FM,
∴四边形MENF是平行四边形,
∵△ABM≌△DCM,
∴BM=CM,
∵E、F分别是BM、CM的中点,
∴ME=MF,
∴平行四边形MENF是菱形,
∴EF与MN互相垂直.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知如图,在菱形
中,对角线
,
相交于点
,
,
.
(1)求证:四边形
是矩形;(2)若
,
,求四边形
的面积. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠C=90°,点D是AB边上的一点,DM⊥AB,且DM=AC,过点M作ME∥BC交AB于点E,

(1)试说明△ABC与△MED全等;
(2)若∠M=35°,求∠B的度数?
-
科目: 来源: 题型:
查看答案和解析>>【题目】在直线l上依次摆放着4023个正方形,已知斜放着放置的2011个正方形的面积分别是1、2、3、…、2011,正放置的2012个正方形的面积依次是S1、S2、S3、…S2012,请猜想:S1+S2+S3+S4+…S2012=_____.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.

(1)求证:AF=DC;
(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.
-
科目: 来源: 题型:
查看答案和解析>>【题目】问题情境1:如图1,AB∥CD,P是ABCD内部一点,P在BD的右侧,探究∠B,∠P,∠D之间的关系?
小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可得∠B,∠P,∠D之间满足 关系.(直接写出结论)

问题情境2
如图3,AB∥CD,P是AB,CD内部一点,P在BD的左侧,可得∠B,∠P,∠D之间满足 关系.(直接写出结论)
问题迁移:请合理的利用上面的结论解决以下问题:
已知AB∥CD,∠ABE与∠CDE两个角的角平分线相交于点F
(1)如图4,若∠E=80°,求∠BFD的度数;
(2)如图5中,∠ABM=
∠ABF,∠CDM=
∠CDF,写出∠M与∠E之间的数量关系并证明你的结论.(3)若∠ABM=
∠ABF,∠CDM=
∠CDF,设∠E=m°,用含有n,m°的代数式直接写出∠M= . -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知A(-4,n),B(1,-4)是一次函数
的图象和反比例函数
的图象的两个交点.
(1)求反比例函数和一次函数的解析式;
(2)求直线
与
轴的交点
的坐标及△
的面积;(3)求不等式
的解集(请直接写出答案).
相关试题