【题目】在直线l上依次摆放着4023个正方形,已知斜放着放置的2011个正方形的面积分别是1、2、3、…、2011,正放置的2012个正方形的面积依次是S1、S2、S3、…S2012,请猜想:S1+S2+S3+S4+…S2012=_____.
![]()
参考答案:
【答案】1012036
【解析】
运用勾股定理可知,每两个相邻的正方形面积和都等于中间斜放的正方形面积,据此即可解答.
观察发现,
∵AB=BE,∠ACB=∠BDE=90°,
∴∠ABC+∠BAC=90°,∠ABC+∠EBD=90°,
∴∠BAC=∠EBD,
∴△ABC≌△BDE(AAS),
∴BC=ED,
∵AB2=AC2+BC2,
∴AB2=AC2+ED2=S1+S2,
即S1+S2=1,
同理S3+S4=3,S5+S6=5,…,S2011+S2012=2011,
则S1+S2+S3+S4+…S2012=1+3+5+…+2011=1006+
×2=1012036.
故答案为:1012036.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AD平分∠BAC,按如下步骤作图:
第一步,分别以点A、D为圆心,以大于
AD的长为半径在AD两侧作弧,交于两点M、N;第二步,连接MN分别交AB、AC于点E、F;第三步,连接DE、DF.(1)求证:四边形AEDF是菱形;
(2)若BD=6,AF=4,CD=3,求BE的长。

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知如图,在菱形
中,对角线
,
相交于点
,
,
.
(1)求证:四边形
是矩形;(2)若
,
,求四边形
的面积. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠C=90°,点D是AB边上的一点,DM⊥AB,且DM=AC,过点M作ME∥BC交AB于点E,

(1)试说明△ABC与△MED全等;
(2)若∠M=35°,求∠B的度数?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平行四边形ABCD中,M、N分别是边AD、BC边上的中点,且△ABM≌△DCM;E、F分别是线段BM、CM的中点.
(1)求证:平行四边形ABCD是矩形.
(2)求证:EF与MN互相垂直.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.

(1)求证:AF=DC;
(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.
-
科目: 来源: 题型:
查看答案和解析>>【题目】问题情境1:如图1,AB∥CD,P是ABCD内部一点,P在BD的右侧,探究∠B,∠P,∠D之间的关系?
小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可得∠B,∠P,∠D之间满足 关系.(直接写出结论)

问题情境2
如图3,AB∥CD,P是AB,CD内部一点,P在BD的左侧,可得∠B,∠P,∠D之间满足 关系.(直接写出结论)
问题迁移:请合理的利用上面的结论解决以下问题:
已知AB∥CD,∠ABE与∠CDE两个角的角平分线相交于点F
(1)如图4,若∠E=80°,求∠BFD的度数;
(2)如图5中,∠ABM=
∠ABF,∠CDM=
∠CDF,写出∠M与∠E之间的数量关系并证明你的结论.(3)若∠ABM=
∠ABF,∠CDM=
∠CDF,设∠E=m°,用含有n,m°的代数式直接写出∠M= .
相关试题