【题目】如图,已知四边形ABCD中,AB//DC,AB=DC,且AB=6cm,BC=8cm,对角线AC =10cm,
(1)求证:四边形ABCD是矩形;
(2)如图(2),若动点Q从点C出发,在CA边上以每秒5cm的速度向点A匀速运动,同时动点P从点B出发,在BC边上以每秒4cm的速度向点C匀速运动,运动时间为t秒(0≤t<2),连接BQ、AP,若AP⊥BQ,求t的值;
(3)如图(3),若点Q在对角线AC上,CQ=4cm,动点P从B点出发,以每秒1cm的速度沿BC运动至点C止.设点P运动了t秒,请你探索:从运动开始,经过多少时间,以点Q、P、C为顶点的三角形是等腰三角形?请求出所有可能的结果.
![]()
参考答案:
【答案】(1)见解析;(2)
;(3)t=4秒或1.6秒或5.5秒.
【解析】试题分析:(1)先根据一对对边平行且相等的四边形是平行四边形判定四边形ABCD是平行四边形,再根据勾股定理的逆定理证明∠B=90°,得出四边形ABCD是矩形;
(2)先过Q作QM⊥BC于M点,AP与BQ交于点N,判定△ABP∽△BMQ,得出
,即
,求得t的值即可;
(3)分为三种情况讨论:当CQ=CP=4cm时,当PQ=CQ=4cm时,当QP=CP时,分别根据等腰三角形的性质,求得BP的长,进而得到t的值.
试题解析:
证明:(1)∵AB∥DC,AB=DC,
∴四边形ABCD是平行四边形,
∵AB=6cm,BC=8cm,AC=l0cm,
∴AB2+BC2=100,AC2=100,
∴AB2+BC2=AC2,
∴∠B=90°,
∴四边形ABCD是矩形;
(2)如图,过Q作QM⊥BC于M点,AP与BQ交于点N,
![]()
则CQ=5t,QM=3t,CM=4t,MB=8-4t,
∵∠NAB+∠ABN=90°,∠ABN+∠NBP=90°,
∴∠NAB=∠NBP,且∠ABP=∠BMQ=90°,
∴△ABP∽△BMQ,
∴
,
即
,
解得t=
;
(3)分为三种情况:①如图1,
![]()
当CQ=CP=4cm时,
BP=8-4=4cm,
即t=4秒;
②如图2,
![]()
当PQ=CQ=4cm时,过Q作QM⊥BC于M,
则AB∥QM,
∴
,
∴
,
∴CM=3.2(cm),
∵PQ=CQ,QM⊥CP,
∴PC=2CM=6.4cm,
∴BP=8cm-6.4cm=1.6cm,
∴t=1.6s;
③如图3,当QP=CP时,过P作PN⊥AC于N,
![]()
则CN=
CQ=2,∠CNP=∠B=90°,
∵∠PCN=∠BCA,
∴△PCN∽△ACB,
∴
,
∴
,
∴CP=2.5cm,
∴BP=8cm-2.5cm=5.5cm,
t=5.5s,
即从运动开始,经过4秒或1.6秒或5.5秒时,以点Q、P、C为顶点的三角形是等腰三角形,即t=4秒或1.6秒或5.5秒.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.

(1)求证:AF=DC;
(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.
-
科目: 来源: 题型:
查看答案和解析>>【题目】问题情境1:如图1,AB∥CD,P是ABCD内部一点,P在BD的右侧,探究∠B,∠P,∠D之间的关系?
小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可得∠B,∠P,∠D之间满足 关系.(直接写出结论)

问题情境2
如图3,AB∥CD,P是AB,CD内部一点,P在BD的左侧,可得∠B,∠P,∠D之间满足 关系.(直接写出结论)
问题迁移:请合理的利用上面的结论解决以下问题:
已知AB∥CD,∠ABE与∠CDE两个角的角平分线相交于点F
(1)如图4,若∠E=80°,求∠BFD的度数;
(2)如图5中,∠ABM=
∠ABF,∠CDM=
∠CDF,写出∠M与∠E之间的数量关系并证明你的结论.(3)若∠ABM=
∠ABF,∠CDM=
∠CDF,设∠E=m°,用含有n,m°的代数式直接写出∠M= . -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知A(-4,n),B(1,-4)是一次函数
的图象和反比例函数
的图象的两个交点.
(1)求反比例函数和一次函数的解析式;
(2)求直线
与
轴的交点
的坐标及△
的面积;(3)求不等式
的解集(请直接写出答案). -
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,在菱形
中,
为边
的中点,
与对角线
交于点
,过
作
于点
,
.
若
,求
的长;
求证:
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,则平移的距离和旋转角的度数分别为( )

A.4,30° B.2,60° C.1,30° D.3,60°
-
科目: 来源: 题型:
查看答案和解析>>【题目】解不等式组.
把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数解.
相关试题