【题目】如图在中
,
,
,
是
的平分线,交
于点
,
是
的中点,连接
并延长交
的延长线于点
,连接
.
求证:(1)
;
(2)
为等腰三角形
![]()
参考答案:
【答案】(1)见解析;(2)见解析
【解析】
(1)依据AB=AC,∠BAC=36°,可得∠ABC=72°,再根据BD是∠ABC的平分线,即可得到∠ABD=36°,由∠BAD=∠ABD,可得AD=BD,依据E是AB的中点,即可得到FE⊥AB;
(2)依据FE⊥AB,AE=BE,可得FE垂直平分AB,进而得出∠BAF=∠ABF,依据∠ABD=∠BAD,即可得到∠FAD=∠FBD=36°,再根据∠AFC=∠ACB-∠CAF=36°,可得∠CAF=∠AFC=36°,进而得到AC=CF.
证明:(1)∵AB=AC,∠BAC=36°,
∴∠ABC=72°,
又∵BD是∠ABC的平分线,
∴∠ABD=36°,
∴∠BAD=∠ABD,
∴AD=BD,
又∵E是AB的中点,
∴DE⊥AB,即FE⊥AB;
(2)∵FE⊥AB,AE=BE,
∴FE垂直平分AB,
∴AF=BF,
∴∠BAF=∠ABF,
又∵∠ABD=∠BAD,
∴∠FAD=∠FBD=36°,
又∵∠ACB=72°,
∴∠AFC=∠ACB-∠CAF=36°,
∴∠CAF=∠AFC=36°,
∴AC=CF,即△ACF为等腰三角形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,是大小相等的边长为1的正方形构成的网格,A,B,C,D均为格点.
(Ⅰ)△ACD的面积为_____;
(Ⅱ)现只有无刻度的直尺,请在线段AD上找一点P,并连结BP,使得直线BP将四边形ABCD的面积分为1:2两部分,在图中画出线段BP,并在横线上简要说明你的作图方法._____.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,两根高度分别是
米和
米的直杆
、
竖直在水平地面
上,相距
米,现要从
点拉一根绳索,接地后再拉到
点处,为了节省绳索材料,请问:
(1)根据你学过的知识,在地面上确定绳索接地的位置(用点
表示),使绳索的长度最短. (2)求绳索的最短长度(不计接头部分).
-
科目: 来源: 题型:
查看答案和解析>>【题目】某中学在一次爱心捐款活动中,全体同学积极踊跃捐款.现抽查了九年级(1)班全班同学捐款情况,并绘制出如下的统计表和统计图:
捐款(元)
20
50
100
150
200
人数(人)
4
12
9
3
2
求:(Ⅰ)m=_____,n=_____;
(Ⅱ)求学生捐款数目的众数、中位数和平均数;
(Ⅲ)若该校有学生2500人,估计该校学生共捐款多少元?

-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,∠ACB=90°,经过点C的⊙O与斜边AB相切于点P.
(1)如图①,当点O在AC上时,试说明2∠ACP=∠B;
(2)如图②,AC=8,BC=6,当点O在△ABC外部时,求CP长的取值范围.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在甲村至乙村间有一条公路,在C处需要爆破,已知点C与公路上的停靠站A的距离为300米,与公路上的另一停靠站B的距离为400米,且CA⊥CB,如图所示.为了安全起见,爆破点C周围半径250米范围内不得进入,问在进行爆破时,公路AB段是否有危险?请用你学过的知识加以解答.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,∠BAC=90°,AC=AB,点D为直线BC上的一动点,以AD为边作△ADE(顶点A、D、E按逆时针方向排列),且∠DAE=90°,AD=AE,连接CE.
⑴ 如图1,若点D在BC边上(点D与B、C不重合),求∠BCE的度数.
⑵ 如图2,若点D在CB的延长线上,若DB=5,BC=7,求△ADE的面积.

相关试题