【题目】在△ABC中,∠BAC=90°,AC=AB,点D为直线BC上的一动点,以AD为边作△ADE(顶点A、D、E按逆时针方向排列),且∠DAE=90°,AD=AE,连接CE.
⑴ 如图1,若点D在BC边上(点D与B、C不重合),求∠BCE的度数.
⑵ 如图2,若点D在CB的延长线上,若DB=5,BC=7,求△ADE的面积.
![]()
参考答案:
【答案】(1)∠BCE=90°;(2)
.
【解析】试题分析:
(1)由已知条件证△ABD≌△ACE,可得∠ACE=∠B=45°,从而可得∠BCE=∠ACE+∠ACB=90°;
(2)同(1)由已知条件证△ABD≌△ACE,可得CE=BD=5及∠ACE=∠ABD=180°-45°=135°,从而可得∠DCE=∠ACE-∠ACB=90°,这样在Rt△DCE中由勾股定理可求得DE的长,再过点A作AF⊥DE于点F,由等腰三角形和直角三角形的性质可得AF=
DE,这样就可由S△ADE=
DE
AF求得面积了.
试题解析:
(1)如图1,∵ ∠BAC=90°,∠DAE=90°,
∴ ∠BAD+∠DAC=90°,∠EAC+∠DAC=90°,
∴ ∠BAD=∠EAC .
在△ABD和△ACE中,
,
∴ △ABD≌△ACE (SAS)
∴ ∠ACE=∠B
∵ ∠BAC=90°
∴ ∠B+∠ACB=90°
∴ ∠ACE+∠ACB=90° 即:∠BCE=90°.
(2) 如图2,过点A作AF⊥DE于点F.
∵ AD=AE,
∴ 点F是DE的中点.
∵ ∠DAE=90°,
∴
.
同(1)可证:△ABD≌△ACE,
∴EC=BD=5,∠ABD=∠ACE=180°-∠ABC=135°,
∴∠DCE=∠ACE-∠ACB=90°,
又∵DC=BD+BC=5+7=12,
∴DE=
.
∴AF=
.
∴ △ADE的面积为=
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】某学校计划用104 000元购置一批电脑(这批款项须恰好用完,不得剩余或追加).经过招标,其中平板电脑每台1600元,台式电脑每台4000元,笔记本电脑每台4600元.
(1)若学校同时购进其中两种不同类型的电脑共50台,请你帮学校设计该如何购买;
(2)若学校同时购进三种不同类型的电脑共26台(三种类型的电脑都有),并且要求笔记本电脑的购买量不少于15台,请你帮学校设计购买方案. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB为⊙O的直径,CO⊥AB于点O,D在⊙O上,连接BD、CD,延长CD与AB的延长线交于E,F在BE上,且FD=FE.
(1)求证:FD是⊙O的切线;
(2)若AF=10,tan∠BDF=
,求EF的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了降低塑料袋﹣﹣“白色污染”对环境污染.学校组织了对使用购物袋的情况的调查,小明同学5月8日到站前市场对部分购物者进行了调查,据了解该市场按塑料购物袋的承重能力分别提供了0.1元,0.2元,0.3元三种质量不同的塑料袋,下面两幅图是这次调查得到的不完整的统计图(若每人每次只使用一个购物袋),请你根据图中的信息,回答下列问题:
(1)这次调查的购物者总人数是 人;
(2)请补全条形统计图,并说明扇形统计图中0.2元部分所对应的圆心角是 度,0.3元部分所对应的圆心角是 度;
(3)若5月8日到该市场购物的人数有3000人次,则该市场应销售塑料购物袋多少个?

-
科目: 来源: 题型:
查看答案和解析>>【题目】在
中,
,
,点
、
分别在射线
、
上(点
不与点
、点
重合),且保持
.①若点
在线段
上(如图),且
,求线段
的长;②若
,
,求
与
之间的函数关系式,并写出自变量的取值范围;
-
科目: 来源: 题型:
查看答案和解析>>【题目】这组数据20,21,22,23,23的中位数和众数分别是( )
A. 20,23B. 21,23C. 21,22D. 22,23
-
科目: 来源: 题型:
查看答案和解析>>【题目】根据刘慈欣同名小说改编的电影《流浪地球》将中国独特的思想和价值观念融入对人类未来的畅想与探讨,该电影取得了巨大的成功,国内票房总收入为4 655 000 000元,用科学记数法表示4 655 000 000是____.
相关试题