【题目】已知AB是半径为1的圆O直径,C是圆上一点,D是BC延长线上一点,过点D的直线交AC于E点,且△AEF为等边三角形
(1)求证:△DFB是等腰三角形;
(2)若DA=
AF,求证:CF⊥AB.
![]()
参考答案:
【答案】(1)证明详见解析;(2)证明详见解析.
【解析】
试题分析:(1)由AB是⊙O直径,得到∠ACB=90°,由于△AEF为等边三角形,得到∠CAB=∠EFA=60°,根据三角形的外角的性质即可得到结论;
(2)过点A作AM⊥DF于点M,设AF=2a,根据等边三角形的性质得到FM=EM=a,AM=
a,在根据已知条件得到AB=AF+BF=8a,根据直角三角形的性质得到AE=EF=AF=CE=2a,推出∠ECF=∠EFC,根据三角形的内角和即可得到结论.
试题解析:(1)∵AB是⊙O直径,
∴∠ACB=90°,
∵△AEF为等边三角形,
∴∠CAB=∠EFA=60°,
∴∠B=30°,
∵∠EFA=∠B+∠FDB,
∴∠B=∠FDB=30°,
∴△DFB是等腰三角形;
(2)过点A作AM⊥DF于点M,设AF=2a,
∵△AEF是等边三角形,∴FM=EM=a,AM=
a,
在Rt△DAM中,AD=
AF=
a,AM=
a,
∴DM=5a,∴DF=BF=6a,
∴AB=AF+BF=8a,
在Rt△ABC中,∠B=30°,∠ACB=90°,∴AC=4a,
∵AE=EF=AF=2a,
∴CE=AC﹣AE=2a,
∴∠ECF=∠EFC,
∵∠AEF=∠ECF+∠EFC=60°,∴∠CFE=30°,
∴∠AFC=∠AFE+∠EFC=60°+30°=90°,
∴CF⊥AB.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】定义:如图,点M、N把线段AB分割成AM、MN、NB,若以AM、MN、NB为边的三角形是一个直角三角形,则称点M、N是线段AB的勾股分割点.
(1)已知M、N把线段AB分割成AM、MN、NB,若AM=1.5,MN=2.5,BN=2,则点M、N是线段AB的勾股分割点吗?请说明理由.
(2)已知点M、N是线段AB的勾股分割点,且AM为直角边,若AB=24,AM=6,求BN的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】度数为82°30′16″的角的补角的度数为______.
-
科目: 来源: 题型:
查看答案和解析>>【题目】若(ax+3y)2=4x2﹣12xy+by2 , 则a,b的值分别为( )
A.2,9
B.2,﹣9
C.﹣2,9
D.﹣4,9 -
科目: 来源: 题型:
查看答案和解析>>【题目】在小学,我们已经初步了解到,长方形的对边平行且相等,每个角都是90°.如图,长方形ABCD中,AD=9cm,AB=4cm,E为边AD上一动点,从点D出发,以1cm/s向终点A运动,同时动点P从点B出发,以acm/s向终点C运动,运动的时间为ts.
(1)当t=3时,
①求线段CE的长;
②当EP平分∠AEC时,求a的值;
(2)若a=1,且△CEP是以CE为腰的等腰三角形,求t的值;
(3)连接DP,直接写出点C与点E关于DP对称时的a与t的值.

-
科目: 来源: 题型:
查看答案和解析>>【题目】若关于x一元二次方程x2-x-m+2=0的两根x1 , x2满足(x1-1)(x2-1)=-1,则m的值为( )
A.3
B.-3
C.2
D.-2 -
科目: 来源: 题型:
查看答案和解析>>【题目】某校为了解学生在校一周体育锻炼时间,随机调查了35名学生,调查结果列表如下:
锻炼时间/h
5
6
7
8
人数
6
15
10
4
则这35名学生在校一周体育锻炼时间的中位数和众数分别为( )
A.6h,6hB.6h,15hC.6.5h,6hD.6.5h,15h
相关试题