【题目】如图,在四边形ABCD中,已知AB=4cm,BC=3cm,AD=12cm,DC=13cm,∠B=90°,求四边形ABCD的面积。![]()
参考答案:
【答案】解:连接AC,![]()
∵∠B=90°
∴AC2=AB2+BC2=16+9=25
∵AD2=144,DC2=169
∴AC2+AD2=DC2
∴CA⊥AD
∴S四ABCD=S△ABC+S△ACD=
×3×4+
×12×5=36cm
【解析】连接AC,先根据直角三角形的性质得到AC边的长度,再根据三角形ACD中的三边关系可判定△ACD是Rt△,把四边形分成两个直角三角形即可求得面积.![]()
【考点精析】本题主要考查了勾股定理的逆定理的相关知识点,需要掌握如果三角形的三边长a、b、c有下面关系:a2+b2=c2,那么这个三角形是直角三角形才能正确解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】一元二次方程x2﹣8x+20=0的根的情况是( )
A. 没有实数根 B. 有两个相等的实数根
C. 只有一个实数根 D. 有两个不相等的实数根
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,以AB为直径的⊙O分别于BC,AC相交于点D,E,BD=CD,过点D作⊙O的切线交边AC于点F.
(1)求证:DF⊥AC;
(2)若⊙O的半径为5,∠CDF=30°,
求
长(结果保留π). 
-
科目: 来源: 题型:
查看答案和解析>>【题目】省道S226在我县境内某路段实行限速,机动车辆行驶速度不得超过60km/h,如图,一辆小汽车在这段路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方36m的C处,过了3s后,测得小汽车与车速检测仪间距离为60m,这辆小汽车超速了吗?

-
科目: 来源: 题型:
查看答案和解析>>【题目】不论x,y为任何实数,x2+y2﹣4x﹣2y+8的值总是( )
A.正数
B.负数
C.非负数
D.非正数 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNKT的面积分别为S1、S2、S3 . 若S1+S2+S3=15,则S2的值是( )

A.3
B.
C.5
D.
? -
科目: 来源: 题型:
查看答案和解析>>【题目】若多项式2x2-3x+6的值为8,则多项式9-4x2+6x的值是( )
A. 13 B. 11 C. 5 D. -7
相关试题