【题目】如图,在△ABC中,AB=AC=1,BC=
,在AC边上截取AD=BC,连接BD.
(1)通过计算,判断AD2与ACCD的大小关系;
(2)求∠ABD的度数.
![]()
参考答案:
【答案】(1)AD2=ACCD.(2)36°.
【解析】试题分析:(1)通过计算得到
=
,再计算AC·CD,比较即可得到结论;
(2)由
,得到
,即
,从而得到△ABC∽△BDC,故有
,从而得到BD=BC=AD,故∠A=∠ABD,∠ABC=∠C=∠BDC.
设∠A=∠ABD=x,则∠BDC=2x,∠ABC=∠C=∠BDC=2x,由三角形内角和等于180°,解得:x=36°,从而得到结论.
试题解析:(1)∵AD=BC=
,∴
=
=
.
∵AC=1,∴CD=
=
,∴
;
(2)∵
,∴
,即
,又∵∠C=∠C,∴△ABC∽△BDC,∴
,又∵AB=AC,∴BD=BC=AD,∴∠A=∠ABD,∠ABC=∠C=∠BDC.
设∠A=∠ABD=x,则∠BDC=∠A+∠ABD=2x,∴∠ABC=∠C=∠BDC=2x,∴∠A+∠ABC+∠C=x+2x+2x=180°,解得:x=36°,∴∠ABD=36°.
-
科目: 来源: 题型:
查看答案和解析>>【题目】甲,乙两人同时各接受了600个零件的加工任务,甲比乙每分钟加工的数量多,两人同时开始加工,加工过程中其中一人因故障停止加工几分钟后又继续按原速加工,直到他们完成任务,如图表示甲比乙多加工的零件数量
(个)与加工时间
(分)之间的函数关系,观察图象解决下列问题:(1)点B的坐标是________,B点表示的实际意义是___________ _____;
(2)求线段BC对应的函数关系式和D点坐标;
(3)乙在加工的过程中,多少分钟时比甲少加工100个零件?
(4)为了使乙能与甲同时完成任务,现让丙帮乙加工,直到完成.丙每分钟能加工3个零件,并把丙加工的零件数记在乙的名下,问丙应在第多少分钟时开始帮助乙?并在图中用虚线画出丙帮助后y与x之间的函数关系的图象.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,∠C=90°,AC=3,BC=4,点D是AB的中点,点E在DC的延长线上,且CE=
CD,过点B作BF∥DE交AE的延长线于点F,交AC的延长线于点G.(1)求证:AB=BG;
(2)若点P是直线BG上的一点,试确定点P的位置,使△BCP与△BCD相似.

-
科目: 来源: 题型:
查看答案和解析>>【题目】下列说法中正确的有()
(1) 钝角的补角一定是锐角
(2) 过己知直线外一点作这条直线的垂线有且只有一条
(3) —个角的两个邻补角是对顶角
(4) 等角的补角相等
(5) 直线
外一点A与直线
上各点连接而成的所有线段中,最短线段的长是3cm,则点A到直线
的距离是3cm .A. 2个 B. 3个 C. 4 个 D. 5 个
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,己知OA丄OB, ∠AOC=∠BOD,由此判定OC丄OD,下面是推理过程,请在横线上填空.
OA丄OB(己知)
_________=90° (______________)
∠AOB=∠AOC-∠BOC, ∠COD=∠BOD-∠BOC∠AOC=∠BOD
∠AOB=∠COD (等式的性质)
_________=90°
CO 丄 OD (_____________________)
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知直线y=2x-5与x轴和y轴分别交于点A和点B,点C(1,n)在直线AB上,点D在y轴的负半轴上,且CD=
.(1)求点C、点D的坐标.
(2)若P为y轴上的点,当△PCD为等腰三角形时,求点P的坐标.
(3)若点M为x轴上一动点(点M不与点O重合),N为直线y=2x-5上一动点,是否存在点M、N,使得△AMN与△AOB全等?若存在,求出点N的坐标;若不存在,请说明理由.


图1 图2
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知△ABC中,∠ACB=90°,CD⊥AB,垂足为点D,已知AC=3,BC=4.

(1)线段AD,CD,CD,BD是不是成比例线段?写出你的理由;
(2)在这个图形中,能否再找出其他成比例的四条线段?如果能,请至少写出两组.
相关试题