【题目】如图,点A、B、C三点分别在反比例函数y=
(x<0)、y=
(x>0)、y=
(x>0)的图象上,AC⊥y轴于点E,BC⊥x轴于点F,AB经过原点,若S△ABC=5,则k1+k2-2k3的值为________.
![]()
参考答案:
【答案】-10
【解析】
此题可根据反比例函数图像性质特点,可将△ABC分成两个小三角形△AOE,△BOF和一个四边形OECF,由反比例函数性质知
=
,
=
,
=
,又S△ABC=5=
,由此即可得到k1+k2-2k3 的值.
根据题意由图像知S△ABC=
+
+
,
又∵点A、B、C三点分别在反比例函数y=
(x<0)、y=
(x>0)、y=
(x>0)的图象上,
∴
=
,
=
,
=OE
OF=
,
∴S△ABC=
,
∵S△ABC=5,
∴
,
∴
=
=-10.
故答案为:-10
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD中,AC平分∠BAD, ∠ACD=∠ABC=90°,E、F分别为AC、CD的中点,∠D=62°,则∠BEF的度数为_______.

-
科目: 来源: 题型:
查看答案和解析>>【题目】探究:如图①,在正方形ABCD中,点P在边CD上(不与点C、D重合),连结BP.将△BCP绕点C顺时针旋转至△DCE,点B的对应点是点D,旋转的角度是 度.
应用:将图①中的BP延长交边DE于点F,其它条件不变,如图②.求∠BFE的度数.
拓展:如图②,若DP=2CP,BC=3,则四边形ABED的面积是 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”,这批单车分为A、B两种不同款型,其中A型车单价400元,B型车单价320元.
(1)今年年初,“共享单车”试点投放在某市中心城区正式启动,投放A、B两种款型的单车共100辆,总价值36800元.求本次试点投放的A型车、B型车的辆数.
(2)试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开.按照试点投放中A、B两车型的数量比进行投放,且投资总价值不低于184万元.问整个城区全面铺开时投放的A型车、B型车至少多少辆?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=5,OC=4.
(1)在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D,E两点的坐标;
(2)如图2,若AE上有一动点P(不与A,E重合)自A点沿AE方向E点匀速运动,运动的速度为每秒1个单位长度,设运动的时间为t秒(0<t<5),过P点作ED的平行线交AD于点M,过点M作AE平行线交DE于点N.求四边形PMNE的面积S与时间t之间的函数关系式;当t取何值时,s有最大值,最大值是多少?
(3)在(2)的条件下,当t为何值时,以A,M,E为顶点的三角形为等腰三角形,并求出相应的时刻点M的坐标?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,∠MON=90°,点A、B分别在OM、ON上运动(不与点O重合).
(1)如图①,BC是∠ABN的平分线,BC的反方向延长线与∠BAO的平分线交于点D.
①若∠BAO=60°,则∠D的大小为 度,
②猜想:∠D的度数是否随A、B的移动发生变化?请说明理由.
(2)如图②,若∠ABC=
∠ABN, ∠BAD=
∠BAO,则∠D的大小为 度,若∠ABC=
∠ABN, ∠BAD=
∠BAO,则∠D的大小为 度(用含n的代数式表示).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一次函数y=ax+b与反比例函数y=
(x>0)的图像在第一象限交于A、B两点,点B坐标为(4,2),连接OA、OB,过点B作BD⊥y轴,垂足为D,交OA于点C,且OC=CA.(1)求反比例函数和一次函数的表达式;
(2)根据图像直接说出不等式ax+b-
<0的解集为______;(3)求△ABC的面积.

相关试题